典型的弹性体可以配制成在室温(22°C/72°F)下损耗因子在 0.05 至 0.70 范围内,具体取决于基础聚合物和特定成分。图 3a 和 3b 展示了典型弹性体对振幅和频率的响应。在设计含有弹性体的系统或产品时,重要的是要了解响应受循环振幅、频率和温度的影响。它因聚合物类型(即天然橡胶与硅树脂)和特定配方而异。环境温度会影响弹性产品的刚度,但循环会降低刚度,直到接近室温值。图 4 展示了弹性轴承的这种现象。各种弹性体以不同的特定刚度因子响应,但随着循环,刚度总是会降低。金属弹簧通常不受振幅、频率和温度的影响,但阻尼很小。这在隔离范围内是理想的,但在控制系统共振方面完全不够。金属弹簧提供较低的能量存储密度,并且不会像为相同要求设计的弹性部件那样节省空间/重量。
随着船舶运营利润越来越小,故障成本成倍增加,在设计阶段防止断裂的需求变得越来越重要。本报告为设计师提供了另一种工具。它提出了一种疲劳设计方法,将现有的疲劳数据应用于焊接船舶细节。名义应力方法的变体用于连接支架细节中的焊缝终止。这有助于选择可提高疲劳寿命的焊接配置,并评估焊接船舶结构细节中典型的几何应力集中因子和组合载荷的影响。案例研究展示了该方法。提供了所用术语的词汇表,并提出了未来研究的建议。