摘要:Inconel 718 是一种镍基高温合金,由于其高强度和耐腐蚀性能,是航空航天、石油和天然气工业的绝佳选择。IN718 的加工非常具有挑战性;因此,应用增材制造 (AM) 技术是克服这些困难和制造传统技术无法制造的复杂几何形状的有效方法。选择性激光熔化 (SLM) 是一种激光粉末床熔合方法,可用于高精度制造 IN718 样品。然而,工艺参数对制造样品的性能有很大影响。在本研究中,开发了一个预测模型,以获得 IN718 合金 SLM 工艺中的最佳工艺参数,包括激光功率、图案间距和扫描速度。为此,采用具有各种算法的人工神经网络 (ANN) 建模来估计工艺输出,即样品高度和表面硬度。建模结果与实验输出完全吻合,从而证明了 ANN 建模对于预测最佳工艺参数的优势。
摘要:由于铜基合金具有高热导率,而镍基高温合金具有高高温抗拉强度,因此铜基弥散强化合金与镍基高温合金的连接在液体火箭发动机应用中引起了越来越多的关注。然而,这种接头在通过液态过程连接时可能会开裂,从而导致零件失效。在本文中,将 15–95 wt.% GRCop42 成分与 Inconel 625 合金化,并对其进行了表征,以更好地了解开裂的根本原因。结果表明,在对应于 30–95 wt.% GRCop42 的成分中,贫铜液体和富铜液体之间缺乏可混溶性。观察到两种不同的形态,并通过使用 CALPHAD 进行解释; 30–50 wt.% GRCop42 处为铜缺乏的枝晶,枝晶间区域为富铜,60–95 wt.% GRCop42 处为铜缺乏的球体,周围为富铜基质。相分析表明,脆性金属间相在 60–95 wt.% GRCop42 铜缺乏区域析出。本文提出了三种开裂机制,为避免镍基高温合金与铜基弥散强化合金接头缺陷提供指导。
Inconel 718 是一种镍基超级合金,由于其在高温下具有出色的性能,因此是常用的火箭发动机材料。其疲劳寿命在很大程度上取决于表面粗糙度,因为疲劳会在表面引入和扩展裂纹。Aerojet Rocketdyne 设定的零件标准通常要求表面粗糙度值为 64 至 125 Ra。但是,精加工过程中产生的表面形貌和残余应力也会影响疲劳性能。该项目的具体目标是进行文献综述并编写实验方法,以确定车削、喷砂和抛光产生的表面粗糙度、形貌和残余应力如何累积影响中高周疲劳。现有文献显示,经过固溶处理和时效处理的抛光 Inconel 718 在 500 至 600 MPa 的应力幅度范围内达到高周疲劳状态。此范围将成为为 Aerojet 使用的常见精加工工艺(抛光、车削和喷砂)生成有用的 S-N 曲线的起点。测试方法和分析技术将包括使用 Ambios XP1 触针轮廓仪进行表面粗糙度测量、表面形貌的扫描电子显微镜 (SEM) 成像、完全反向悬臂弯曲疲劳测试和 SEM 断裂分析。解决的安全问题与疲劳测试、喷砂和使用 Kalling 溶液蚀刻 Inconel 718 金相学样品有关。
Inconel 718 的定向能量沉积 (DED) 对于航空航天部件的修复至关重要,因为这些部件的认证公差很严格,特别是机械性能。在 DED 制造的 Inconel 718 部件中,硬度变化很大,这表明机械性能发生了变化,必须了解这些变化,以便消除这种变化或根据监管指导在设计中实施。在这项研究中,γ ʹ 析出被认为是整个部件硬度变化的原因,尽管 Inconel 718 传统上被视为 γ ʺ 强化合金。发现基于移动热源的简单析出电位模型与测得的硬度相关,并解释观察到的硬度分布。此外,研究表明,临界厚度小于 2 mm 的截面在竣工条件下永远不会达到峰值硬度。这种理解有助于开发用于微观结构的原位热处理策略,从而优化机械性能,这对于后处理步骤有限的修复技术是必要的。
添加性生产(AM)合金的微结构和机械性能可能会受到冷却速率的变化的显着影响,这是由于不同的增材制造(AM)平台的不同过程条件所致。因此,了解制造过程对AM Inconel 718的微观结构和机械性能的影响至关重要。本研究研究了三个AM过程:激光粉末床融合,激光粉末定向能量沉积和电弧添加剂制造。结果表明,与激光粉末定向能量沉积(LP-DED)相比,全热处理的激光粉末融合(L-PBF)和带脉冲的加性生产(WAAM)Inconel 718样品具有更高的强度,这是由于L-PBF中的晶粒结构较细,并且在WAAM中保留了树突状微型结构。与WAAM和L-PBF相比,LP-DED Inconel 718中的延展性略高,因为碳化物尺寸相对较小,这会导致较小材料体积的应力浓度,从而导致断裂延迟。关键字:添加剂制造(AM);激光粉床融合(L-PBF);激光粉末定向能量沉积(LP-DED);电弧添加剂制造过程(WAAM); Inconel 718
Inconel 738 是一种镍基高温合金,由于具有抗疲劳、高屈服强度、耐腐蚀和热稳定性等优异性能,主要用于航空航天 [ 1-4 ] 和石油工业 [ 5 ] [ 6 ]。Inconel 738 高温合金的力学性能取决于微观结构参数,例如金属间化合物 γ ′ 相 (Ni 3 (Al, Ti)) 的体积分数以及 γ ′ 颗粒的尺寸、分布和形状[ 7-9 ]。然而,燃气轮机的发展导致使用温度越来越高,并且经常出现腐蚀问题 [ 1 , 2 ]。已经对不同的涂层进行了评估以增强腐蚀性能;例如,用于高温应用的涂层包括扩散和热障涂层 [ 10 ]。 Inconel 625 因含有高含量的铬、镍和钼 [11-13],保证了出色的耐腐蚀和抗氧化性能,被广泛用作腐蚀环境的涂层材料 [14]。Inconel 625 也是海洋环境和切削刀具的良好涂层 [15]。因此,可以预见,使用抗氧化涂层(如 Inconel 625)可以防止燃气轮机敏感部件受到严重损坏 [16]。在本研究中,通过横向激光熔覆在 Inconel 738 基材上涂覆了 Inconel 625 镍基高温合金。目前,有多种表面涂层方法可供选择,如机械法[17]、化学法[18-21]、溶胶-凝胶法[22]、氧化法[23,24]、渗碳法[25]、离子注入法[26,27]、热法[28,29]和熔覆法[30]。激光熔覆(LC)是一种先进的表面改性技术[31,32],常用于工业应用,例如
1.1.2 冲压喷气发动机...................................................................................................................... 8
用高科技合金制造结构件的成本很高,因此,缺陷或磨损的修复对工业生产来说是一项重要的资产[1]。在众多新技术中,激光熔覆(又称直接能量沉积)正处于新兴领先地位。与其他修复工艺相比,熔覆中的能量输入是空间局部的,受热影响区较小[2–4]。在激光熔覆修复的部件中,基材和熔覆区之间会形成一个具有微观结构梯度的界面。它决定了修复部件的内聚力和寿命[5, 6]。工艺参数和部件的具体几何形状共同控制着热输入、熔池形状、空间温度梯度和冷却速度,而这些因素决定着材料的微观结构。材料体积可以经过多次凝固-再熔化循环,打印上述各层,具体取决于熔池深度和形状,熔池深度和形状可能非常复杂,正如 Biegler 等人在 [7] 中通过实验展示的那样。材料随后也会经历退火,因为部件一直处于高温下,直到工艺结束 [8, 9]。
在这项研究中,不锈钢316L和Inconel 625合金粉是通过使用定向的能量沉积过程加上制造的。对粘合不锈钢316L/Inconel 625样品的硬度和微观结构的热处理效应。微观结构表明,除了几个小裂缝外,不锈钢316L和Inconel 625之间没有次要相和界面区域附近的大夹杂物。TEM和Vickers硬度的结果表明,界面区域的厚度几十微米。有趣的是,随着热处理温度的升高,不锈钢区域的裂纹不会改变形态,而不锈钢316L的硬度值和Inconel 625的硬度值也下降。这些结果可用于使用定向能量沉积的不锈钢316L材料的表面处理管道和阀门,并通过表面处理材料进行表面处理。关键字:定向能量沉积,界面,物理特性,热处理
摘要:近年来,Inconel 625 的工业应用显著增长。这种材料是一种镍基合金,以其耐化学性和机械性能而闻名,尤其是在高温环境下。通过金属增材制造 (MAM) 生产的零件的疲劳性能在很大程度上取决于其制造参数。因此,表征由给定参数组生产的合金的性能非常重要。本研究提出了一种表征 MAM 零件机械性能的方法,包括通过激光定向能量沉积 (DED) 进行材料生产参数化。该方法包括在 DED 生产微型样品后对其进行测试,并由通过实验数据开发和验证的数值模型支持应力计算。本文讨论了通过 DED 生产的 Inconel 625 的广泛机械特性,重点是高周疲劳。使用微型样品获得的结果与标准尺寸样品非常一致,因此即使在某些塑性效应的情况下也验证了所应用的方法。至于高周疲劳性能,通过 DED 生产的样品表现出良好的疲劳性能,可与其他竞争金属增材制造 (MAMed) 和传统制造的材料相媲美。