随着器件尺寸缩小节点预计将在未来两年内降至 5 纳米以下,具体为 2 纳米 [7],几何尺寸缩小预计将很快达到其物理极限,或达到成本和可靠性问题远远超过收益的程度。此外,物理尺寸缩小可能不再是推动行业发展的主要技术驱动力:物联网 (IoT)、信息物理系统、自动驾驶汽车、云计算和大数据、绿色能源以及医疗和健康技术等应用预计将影响设计和制造方法[8]。使用新材料和新工艺制造的复杂 3D 结构的尺寸不断减小,预计在未来几年内也将加速使用[9] [10]。
光刻和图案化将继续发展,但面临许多挑战。预计 2024 年将推出 0.55 NA 的高 NA 工具,但需要在光源、工具、掩模、材料、计算光刻和随机控制方面进行改进,以使这些工具能够投入生产使用。预计工艺窗口会很小,迫使使用更薄的光刻胶,并且可能还需要改进工艺集成方案。高 NA 工具的较小场尺寸对于某些产品设计来说很困难。这可能会刺激许多相对较小的芯片的高性能封装的增长。人们也在考虑采用更大的掩模尺寸来实现更大的曝光场。需要改进光刻胶和相关材料,但即使有了改进,为了能够充分控制随机效应,印刷剂量仍将继续增加。从长远来看,可以开发更高 NA 的 EUV(“超 NA”),但这面临许多技术挑战,并且可能被证明不如 0.33 或 0.55 NA EUV 的多重图案化有效。化学增强型光刻胶将至少在 1 纳米逻辑节点之前继续作为主力光刻胶,但基于金属的新型光刻胶(湿法和干法沉积)显示出良好的前景。随着世界对环境问题的关注度不断提高,能源效率和化学安全性也成为关注的焦点。
IRDS 的工厂集成 (FI) 章节致力于确保微电子制造基础设施包含以可承受的成本和大批量生产产品所需的组件。要发挥摩尔定律的潜力,需要充分利用设备特征尺寸的减小、新材料、产量提高到接近 100%、晶圆尺寸增加和其他制造生产率的改进。这反过来又需要一个工厂系统,该系统可以完全集成额外的工厂组件,并共同利用这些组件来交付符合其他 IRDS 国际重点团队 (IFT) 确定的规格以及成本、数量和产量目标的产品。要保持数十年来每年每项功能成本降低 30% 的趋势,还需要抓住所有可能的成本降低机会。这些包括前端和后端生产、设施、收益管理和改进、增加系统集成(例如供应链上下游)以及改善环境健康和安全方面的机会。FI 挑战在实现这些机遇方面发挥着关键作用,许多 FI 技术挑战正在成为实现重大技术里程碑的限制因素。
萨潘·阿加瓦尔 Brad Aimone Hiro Akinaga 奥蒂托阿莱克 Akinola Mustafa Badaroglu Gennadi Bersuker Christian Binek Geoffrey Burr Leonid Butov Kerem Camsari Gert Cauwenberghs An Chen Winston Chern Supriyo Datta John Dallesasse Shamik Das Erik DeBenedictis Peter Dowben Tetsuo Endoh Ben Feinberg Thomas Ferreira de Lima Akira Fujiwara Elliot Fuller迈克尔·弗兰克·保罗·弗勒松 迈克尔·弗勒 藤村聪 迈克·加纳 查库·戈普兰·博格丹·戈沃雷努 猫·格雷夫斯 滨谷航平 羽正美 詹妮弗·哈斯勒 林义宏 平本敏郎 D·斯科特·霍姆斯 莎朗·胡 弗朗西斯卡·亚科比·岳 市原雅库 丹妮尔·伊尔梅尼 吉恩·安妮·因科维亚 恩金·伊佩克 泉目小二 神山聪 川端清志 阿西夫·可汗 敦宏木下一小林武人 Kozasa Suhas Kumar Ilya Krivorotov 秀岭 李湘 (Shaun) Li Shy-Jay Lin Tsu-Jae King Liu
姓名 领域 组织 Byun, Ilkwon Cryo-Semi, QIP-QC 韩国首尔国立大学 Cuthbert, Michael Cryo, QIP 英国国家量子计算中心 DeBenedictis, Erik QIP-QC Zettaflops,美国 Delfanazari, Kaveh QIP-QC 英国格拉斯哥大学 Fagaly, Robert L. SCE-App Tristan Technologies(已退休),美国 Fagas, Giorgios QIP 爱尔兰廷德尔国家研究所 Febvre, Pascal SCE-Fab 法国萨瓦大学勃朗峰分校 Filippov, Timur SCE-Logic HYPRES,美国 Fourie, Coenrad SCE-EDA 南非斯泰伦博斯大学 Frank, Michael SCE-Logic, -Roadmap 美国桑迪亚国家实验室 Gupta, Deep SCE, Cryo-Semi SEACORP,美国 Herr, Anna SCE IMEC,比利时 Herr, Quentin SCE IMEC,美国Holmes, D. Scott [主席] SCE Booz Allen Hamilton,美国 Humble, Travis QIP-QC 橡树岭国家实验室,美国 Leese de Escobar, Anna SCE-App, -Bench Technology Vector Inc.,美国 Min, Dongmoon Cryo-Semi,QIP-QC 首尔国立大学,韩国 Mueller, Peter QIP-QC IBM 苏黎世,瑞士 Mukhanov, Oleg QIP-QC, SCE-Logic SEEQC,美国 Nemoto, Kae QIP 国家信息研究所 (NII),日本 Papa Rao, Satyavolu SCE-Fab,QIP 纽约州立大学理工学院,美国 Pelucchi, Emanuele QIP-QC 廷德尔国家研究所,爱尔兰 Plourde, Britton QIP, SCE 雪城大学,美国 Soloviev, Igor SCE 罗蒙诺索夫莫斯科国立大学,俄罗斯 Tzimpragos, George SCE-Logic, -Metrics 密歇根大学,美国 Van Horn, Andrew QIP-QC 杜克大学美国大学 Weides, Martin SCE, QIP 英国格拉斯哥大学 Yoshikawa, Noboyuki SCE-Logic, -Bench 日本横滨国立大学 You, Lixing SCE 中国科学院上海微系统与信息技术研究所 该团队感谢 Paolo Gargini、An Chen、Elie Track 和 IEEE 超导委员会对开发 CEQIP IFT 的鼓励和支持。我们还要感谢 Linda Wilson 提供的行政帮助和支持。2023 年报告的贡献者包括外部系统连接 (OSC) IFT 的 Carlos Augusto。
Mueller,Peter QIP-QC IBMZürich,瑞士Mukhanov,Oleg QIP-QC,Sce-Logic Seeqc,美国Nemoto,Kae QIP QIP National Institute of Informatics(NII)廷德尔国立研究所,爱尔兰普卢德,布里顿QIP锡拉丘兹大学,美国索洛维耶夫,伊戈尔SCE洛莫诺索夫莫斯科州立大学,俄罗斯俄罗斯Tzimpragos,乔治SCE-LOGIC,MICHIGAN和MICHIGAN US,MICHIGAN和UC SANTA BARBARA SCE-Logic,-banch Yokohama国立大学,日本,您,中国CAS的Lixing Sce-Fab Simit,感谢Paolo Gargini,Chen,Elie Track和IEEE超导委员会的鼓励和支持,以开发CEQIP IFT。我们还要感谢琳达·威尔逊(Linda Wilson)的行政帮助和支持。
然而,仅靠基本规则的缩放不足以降低单元高度。要完成这项任务,必须将设计缩放因子付诸实践。例如,通过缩放标准单元中有源器件的数量/宽度以及缩放次要规则(如尖端到尖端、扩展、PN 分离等),标准单元高度将进一步降低。然而,压缩逻辑单元的有源区域部分将使其他设计规则成为设计缩放的瓶颈。为了规避这些问题,有人建议减少或实际上消除为电源轨保留的区域,方法是将其从晶圆正面移到器件接触层下方,以将其分配给额外的单元内布线[1][2]以及在 N/P 上堆叠 P/N 器件[3]。图 MM-3 显示了 2025 年标准单元缩放的趋势。
摘要:遗传性视网膜疾病 (IRD) 是一大类遗传和临床上不同的致盲眼部疾病,可导致渐进性和不可逆的光感受器退化和视力丧失。迄今为止,尚未发现治愈方法,尽管近年来在治疗特定 IRD 方面取得了进展。为了加速治疗方法的发现,视网膜类器官提供了一种理想的人类 IRD 模型。本综述旨在介绍视网膜类器官的发展背景和对人类视网膜体外研究以及人类视网膜发生和视网膜病理的重要性。从那里,我们探索 IRD 背景下的视网膜病理和 IRD 治疗发现的当前前景。我们讨论了视网膜类器官在这种情况下的实用性(作为 IRD 的患者来源细胞模型),以准确了解特定 IRD 致病变异背后的发病机制和潜在机制。最后,我们讨论了视网膜类器官在现在和未来 IRD 治疗发现中的重要性和前景。
图 2. 使用宽度归一化导通电流除以源漏电场与栅极场感应载流子浓度,对 HP 晶体管类别中的一组 2D FET 演示进行性能基准测试。1L:单层。>3L:厚度超过三层。2020 IRDS HP:IRDS 预计的 5 纳米节点高性能逻辑晶体管规格。2020 IRDS HD:IRDS 预计的 5 纳米节点高密度或低功耗逻辑晶体管规格。带有叠加“×”的数据点表示 I Max /E SD 是从输出特性(I DS 与 V DS )的线性区域中提取的情况,因此与来自饱和状态的其他点相比可能被夸大。插图:底部栅极 2D FET 的示意图(添加了顶部栅极,在某些报告的设备中使用),其中突出显示了关键参数。 12,51,53-65
遗传性视网膜疾病 (IRD) 包括一组导致渐进性视力障碍和失明的多种遗传性疾病。多年来,人们在了解 IRD 的潜在分子机制方面取得了长足的进步,为新型治疗干预奠定了基础。基因疗法已成为治疗 IRD 的一种引人注目的方法,通过靶向基因增强取得了显著的进展。然而,仍然存在一些挫折和限制,阻碍了 IRD 基因治疗的广泛临床成功。一种有希望的研究途径是开发新的基因组编辑工具。CRISPR-Cas9 核酸酶、碱基编辑和主要编辑等尖端技术在靶向基因操作中提供了前所未有的精度和效率,为克服 IRD 基因治疗中现有的挑战提供了潜力。此外,由于对病毒载体的免疫反应,传统基因治疗遇到了重大挑战,这仍然是实现持久治疗效果的关键障碍。纳米技术已成为优化眼部疾病基因治疗结果的宝贵盟友。纳米级精度设计的纳米粒子可以更好地将基因递送至特定视网膜细胞,从而增强靶向性并降低免疫原性。在这篇综述中,我们讨论了 IRD 基因治疗的最新进展,并探讨了临床试验中遇到的挫折。我们重点介绍了用于治疗 IRD 的基因组编辑技术进展,以及如何将纳米技术整合到基因递送策略中以提高基因治疗的安全性和有效性,最终为 IRD 患者带来希望,并可能为其他眼部疾病的类似进展铺平道路。