新颖的聚酰亚胺堆积材料,用于高线制造高什岛,田中Shigeru tanaka,汉字木木木马斯拉·尼西纳卡(Masaru Nishinaka)和日本摘要的Mutsuaki Murakami Kaneka Corporation,我们摘要我们已经开发了一种新的热量型材料,以高效率堆积的pwbs高speed speed i/o o i/o o i sep speeed i/o o o i/sep speed i/o o i/o o o i/o。这些PWB满足以下要求;精细电路,低介电特性和出色的机械性能的良好加工性。我们提出的聚酰亚胺堆积材料显示出3.1的介电常数(DK),介电损耗(DF)为0.01(在1GHz时)。此外,机械性能以下材料显示;低温膨胀系数(CTE)为45ppm,拉伸强度为100MPa。尽管材料的表面粗糙度低于200米,但我们还是成功地沉积了具有非常高的果皮强度的无电镀层铜层。这意味着即使使用常规的半添加过程,该材料也适用于制造精细的电路。实际上,我们可以制作一个小于10micron l/s(线路和空间)的精细电路。近年来,需要电子设备具有许多功能和高处理速度。为了满足这些要求,像高性能CPU这样的IC芯片已经演变为具有高时钟频率和高I/O数字。要将CPU安装到基板上,通常采用翻转芯片附件方法以表现出CPU的最大性能,因此基板必须具有高接线密度。堆积的PWB,其电路是由半粘液方法形成的,这些底物已使用。下一代CPU的下一代堆积PWB,预计将具有较高的I/O数字,必须具有小于20微米L/s(线路和空间)的精细电路。对于制造精细的电路,对于构建材料而言,形成细缝电路的构建材料很重要,可以尽可能地具有少量的表面粗糙度,并且能够在不剥落的情况下粘附电路。环氧树脂主要用于堆积材料。处理环氧类型的堆积材料,以使材料的表面粗糙,并通过锚固效果牢固地粘附电路。为了制造小于20微米L/s的下一代细缝电路,需要一种新的堆积材料,其表面粗糙度比现有材料的表面粗糙度较小,并且对电路的良好粘合度。此外,新的积累材料必须具有低CTE(热膨胀系数)和低介电性能,这将改善堆积PWBS的电气可靠性或电气性能。为了开发下一代堆积材料,我们开始开发一种新的聚酰亚胺积聚材料,该材料基于用于电绝缘材料的聚酰亚胺树脂的特性,该材料期望具有出色的性质。由于这项研究,我们开发了一种新型的热固性聚酰亚胺积聚材料,该材料符合上述要求。在这项调查中,副本在本文中,评估了材料上无电镀层铜层的吉赫兹(GHz)周围的热性能,介电特性,通过可加工性能通过可加工性能通过激光进行细插电路的加工性。首先设计了新堆积材料的目标特性,设计了新堆积材料的目标特性。- - 一个小于50 ppm--的热膨胀系数(CTE)的介电损耗(DF)小于0.010,在1GHz- -a机械强度上,在100MPA-抗性的机械强度上,没有卤化的化合物 - 乘积构建的精细材料构建均超过20个微观的构建,构建均超过20个微观的过程,该过程的构建均超过20个,构建的启动构建的开发型构建均超过20个,构建的开发型构建均超过20次,构建了启用的新构建。堆积材料的表面以通过半添加过程制造精细的电路,堆积材料需要具有少量表面粗糙度的表面,并且具有较高的果皮强度,并具有无电镀层铜层。
Crundall, D. E., & Underwood, G. (1998).经验和处理需求对驾驶员视觉信息获取的影响。人体工程学,41 (4),448 – 458。Ellis, S. R., & Stark, L. (1986)。视觉扫描中的统计依赖性。人为因素:人为因素和人体工程学学会杂志,28 (4),421 – 438。Green, P. (2015)。驾驶员在驾驶时看哪里(以及看多长时间)。交通安全中的人为因素,77 – 110。Harris Sr, R. L., Glover, B. J., & Spady Jr, A.A.(1986)。飞行员扫描行为的分析技术及其应用 (NASA Tech.报告号2525)。弗吉尼亚州汉普顿:兰利研究中心。Haslbeck, A., & Zhang, B.(2017)。我用我的小眼睛观察:在手动仪表飞行场景中分析航空公司飞行员的注视模式。应用人体工程学,63,62 – 71。Hillier,F. S.(2012)。运筹学简介。Tata McGraw - Hill Education。国际标准化组织。(2002)。ISO 15007 - 1:道路车辆 - 测量与运输信息和控制系统相关的驾驶员视觉行为 - 第 1 部分:定义和参数。摘自 http://www.iso.org Itoh,Y.,Hayashi,Y.,Tsukui,I.,& Saito,S.(1990)。飞机飞行员眼球运动和心理工作负荷的人体工程学评估。人体工程学,33 (6),719 – 732。Jeong, H.,& Liu, Y.(2019)。非驾驶相关任务模式和道路几何形状对驾驶时眼球运动、车道保持性能和工作量的影响。交通研究 F 部分:心理学和行为,60,157 – 171。Kang, Z.,& Landry, S. J.(2014)。使用扫描路径作为多目标跟踪冲突检测任务的学习方法,56 (6),1150 – 1162。Kang, Z., & Landry, S. J.(2015)。多元素目标跟踪任务的眼动分析算法:基于最大转换的聚集层次聚类。IEEE 人机系统学报,45 (1),13 – 24。Krejtz, K., Duchowski, A., Szmidt, T., Krejtz, I., González Perilli, F., Pires, A., … Villalobos, N. (2015)。凝视转换熵。ACM 应用感知通讯 (TAP),13 (1),4 – 20。Liang, Y.、Horrey, W. J. 和 Hoffman, J. D. (2015)。开车时阅读文本:了解驾驶员对分心的战略和战术适应。人为因素:人为因素和人体工程学学会杂志,57 (2),347 – 359。Liang, Y., Lee, J. D., & Yekhshatyan, L. (2012)。视线偏离道路有多危险?算法根据自然驾驶中的扫视模式预测碰撞风险。人为因素:人为因素和人体工程学学会杂志,54 (6),1104 – 1116。Liechty, J., Pieters, R., & Wedel, M. (2003)。全局和局部隐性视觉注意:来自贝叶斯隐马尔可夫模型的证据。Psycho- metrika,68 (4),519 – 541。Marchitto,M.,Di Stasi,L. L.,& Cañas,J. J.(2012)。任务负荷操纵下的眼球运动:几何形状对空中交通管制模拟任务中扫视的影响。制造业和服务业的人为因素和人体工程学,22 (5),407 – 419。Milton,J.,& Mannering,F. (1998)。公路几何形状、交通相关元素和机动车事故频率之间的关系。交通运输,25 (4),395 – 413。Mourant, R. R. 和 Rockwell, T. H. (1970)。将眼球运动模式映射到驾驶中的视觉场景:一项探索性研究。人为因素:人为因素和人体工程学学会杂志,12 (1),81 – 87。Noton, D. 和 Stark, L. (1971)。眼球运动和视觉感知。《科学美国人》 ,224 (6),34 – 43。Pradhan, A. K.、Hammel, K. R.、DeRamus, R.、Pollatsek, A.、Noyce, D. A. 和 Fisher, D. L. (2005)。使用眼球运动评估驾驶员年龄对驾驶模拟器中风险感知的影响。《人为因素:人为因素和人体工程学学会杂志》 ,47 (4),840 – 852。
[5] L. Zhang 等人,“内燃机可变压缩比技术的最新进展”,SAE 技术论文 2019-01-0239,2019 年。[6] J. Wang 等人,“均质压燃 (HCCI) 燃烧:挑战与机遇”,燃烧与火焰,第 200 卷,第 1-27 页,2019 年。[7] K. Smith 等人,“汽油直喷:当前技术和未来发展的回顾”,国际发动机研究杂志,第 20 卷,第 4 期,第 441-455 页,2019 年。[8] A. Brown 等人,“轻度混合动力电动汽车:综合评论”,IEEE Access,第 20 卷,第 4 期,第 441-455 页,2019 年。 7,第 29328-29344 页,2019 年。[9] B. Chen 等人,“全混合动力系统:设计、控制和能源管理策略”,Energies,第 12 卷,第 14 期,第 2683 页,2019 年。[10] C. Davis 等人,“插电式混合动力汽车:近期发展和未来展望回顾”,IEEE Transactions on Transportation Electrification,第 6 卷,第 3 期,第 858-872 页,2020 年。[11] X. Li 等人,“燃料电池电动汽车:进展、挑战和未来展望”,Journal of Power Sources,第 20 卷,第 3 期,第 858-872 页,2020 年。 382,第 176-196 页,2018 年。[12] Y. Wang 等人,“电池电动汽车的进步:挑战与机遇回顾”,可再生和可持续能源评论,第 74 卷,第 1151-1164 页,2017 年。[13] Z. Zhang 等人,“固态电池:挑战与前景”,先进能源材料,第 8 卷,第 19 期,2018 年。[14] Guezennec Y、Musardo C、Staccia B、Midlam Mohler S、Calo E、PisuP。带有混合模式 HCCI/DI 发动机的 HEV 的 NOx 减排监控。SAE 技术论文;2004-05-0123; [15] Midlam- Mohler S, Haas S ,Guezennec Y, Bargende M, Rizzoni G. 带外部混合气制备的混合模式柴油 HCCI/DI. SAE 技术论文 2004;2004-05-0446;2004。侯建雄,乔晓倩。利用小波包变换对 HCCI DME 发动机爆震燃烧特性进行表征。应用能源 2010;87:1239-46。 [16] JOO ss P Tu est d J h ss “HCCI 发动机配备三元催化转化器详细排放形态的实验研究”,SAE P per 2001-01-1031,2001 年。 [17] DS Kim d CS Lee “通过可变预混合燃料和 EGR 改善 HCCI 发动机的排放特性”,Fue v 85 5-6,第 695-704 页,2006 年。 [18] Jacek Hunicz、Alejandro Medina,对配备三元催化转化器的 HCCI 发动机详细排放形态的实验研究,Energy 117(2016 年)388-397。 [19] M Christese A Hu tqvist d J h ss “Dem str ti g the multi fuel capacity of ahm ge e us ch rge c mpressi ig iti e with v ri bec mpressi ir ti ” SAE P per1999- 01- 3679, 1999. [20] M Christese J h ss d P Ei ew “HCCI using isoctane, ethanol and natural gas—c mp ris with sp rk ig iti per ti ” SAE P per 972874, 1997. [21] K. Hiraya, K. Hasegawa, T. Urushihara, A. Iiyama, and T. Itoh,汽油燃料压燃发动机的研究——工作区域扩展试验。SAE 论文 2002-01-0416,2002 年。[22] N Iid d T Ig r shi,“内燃机中正丁烷和 DME/空气混合物的自燃和燃烧” SAE 论文 2000-01-1832,2000 年。JOOlsson、P. Tunestal、BJ Johansson、S Five d R Ag md M Wi i“HCCI 中压燃发动机的最优燃烧条件” SAE 论文 2002-01-0111,2002 年。[23] SR Ganesan,内燃机,第 4 版。印度新德里:Tata McGraw-Hill Education,2013 年。[24] R.Stone,《内燃机简介》,第 4 版。纽约州纽约:Palgrave Macmillan,2012 年。[25] JB Heywood,《内燃机基础》,第 2 版。纽约州纽约:McGraw-Hill,1988 年。[26] AK Agarwal,《汽油发动机管理:系统和部件》,第 1 版。纽约州纽约:Springer,2005 年。[27] RD Braun,《内燃机轴承和流体动力轴承的润滑》,第 1 版。纽约州纽约:Springer,2010 年。