数字化期待已久的进展每天都会产生大量的医疗数据,而对这些数据进行手动分析和有针对性的、以患者为中心的评估变得越来越困难甚至不可行。这种状况以及个性化精准医疗日益复杂的相关要求,凸显了整个医疗保健系统对现代软件解决方案和算法的需求。过去几年,几乎所有医学领域都采用了最先进的设备和技术,确实已经使自动化流程至少部分进入了常规临床实践。这类系统利用了各种各样的人工智能 (AI) 技术,其中大多数已经开发用于优化医学图像重建、降噪、质量保证、分类、分割、计算机辅助检测和分类,以及新兴的研究领域放射基因组学。人工智能处理的任务完成得更快、更准确,这一点在 2015 年首次举办的 ImageNet 大规模视觉识别挑战赛 (ILSVCR) 的年度结果中得到了明确证明,错误率远低于人类。这篇评论文章将讨论人工智能在妇产科诊断中的潜在能力和目前可用的应用。本文将特别关注产前超声诊断中的自动化技术。
转导的推论已通过几片图像分类进行了广泛研究,但在最近的,快速增长的文献中,有关适应视觉模型(如剪辑)的文献被完全忽略了。本文介绍了转换零射击和少量剪辑的分类,其中在其中共同进行推理,在一批无标记的查询样品中共同执行,而不是独立处理每个实例。我们最初构建了信息性的文本概率特征,从而在单元单元集中导致分类问题。受期望最大化(EM)的启发,我们基于优化的分类目标使用Dirichlet定律对每个类别的数据概率分布进行模型。然后使用一种新颖的块最小化最小化算法来解决最小化问题,该算法同时估计分布参数和类分配。在11个数据集上进行的广泛的Numerical实验强调了我们批处理推理方法的效果和效率。在带有75个样本的测试批次的零摄像任务上,我们的APARCH产量比Clip的零弹性性能提高了20%的ImageNet准确性。此外,我们在几次设置中胜过最先进的方法。代码可在以下网址提供:https://github.com/ segolenemartin/trandductive-clip。
摘要 - 电子显微镜图像中轴突和髓磷脂的分割使神经科医生可以突出轴突的密度和周围髓磷脂的厚度。这些特性对于预防和预测白质疾病具有极大的兴趣。通常手动执行此任务,这是一个漫长而乏味的过程。我们提出了用于通过机器学习计算该细分的方法的更新。我们的模型基于U-NET网络的体系结构。我们的主要贡献包括在u-Net网络的编码器部分中使用转移学习,以及分割时测试时间增加。我们使用在Imagenet 2012数据集中预先训练的Se-Resnet50骨干重量。我们使用了23张图像的数据集,其中包括相应的分段掩模,这也是由于其极小的尺寸而具有挑战性的。结果表明,与最先进的表演相比,测试图像的平均精度为92%。也必须注意,可用样品是从call体的老年人中取的。与从脊髓或健康个体的视神经中采集的样品相比,这是一种额外的困难,具有更好的轮廓和碎屑较少。索引术语 - 深度学习,分割,髓磷脂,轴突,G比,卷积神经网络(CNN),电子显微镜
最近,在资源受限的移动设备上,轻巧的视觉变形金刚(VITS)具有出色的性能和较低的潜伏期,与轻量级卷积神经网络(CNNS)组成。搜索者发现了轻巧的VIT和轻量级CNN之间的许多结构连接。但是,尚未对块结构,宏和微观设计的显着建筑差异进行检查。在这项研究中,我们从VIT的角度和震撼人心的移动设备前景中重新审视了轻量级CNN的有效性。指定,我们通过集成了轻量级VIT的有效建筑设计,从而增强了标准轻量级CNN(即Mobilenetv3)的移动友好性。这最终带有一个新的纯轻质CNN家族,即重新投资。广泛的实验表明,重新投资优于现有的最先进的轻量级VIT,并在各种视觉任务中表现出有利的延迟。值得注意的是,在ImageNet上,Repvit在iPhone 12上以1.0毫秒的延迟达到了80%的前1次精度,这是我们最佳的首次使用轻量级型号。此外,当Repvit与SAM遇到SAM时,我们的Repvit-SAM比Advanced Mobilesam可以实现近10×的推理。代码和模型可在https://github.com/thu-mig/repvit上找到。
建筑神经体系结构通常需要在机器学习领域的专业知识,在该领域中,需要对模型建设的过程拥有广泛的知识和复杂性。自动化机器学习(AUTOML)算法,旨在简化此过程,并根据给定数据集自动构建模型体系结构。 本论文研究了针对卷积神经网络(CNNS)Resnet 50,InceptionV 3和VGG 16的Autokeras(一种汽车算法)的性能,以实现面部情感识别的任务(FER)。 CNN由于其专门的空间学习架构而经常用于FER任务。 使用转移学习作为本文的主要方法,杠杆培训了CNN的预训练的成像网架构。 所有预训练的层都被冷冻,并且完全连接的层和分类层例外。 然后,在面部表情情绪的瓦阿赫加数据集上对他们进行培训。 Autokeras在同一数据集上进行了培训,但是它是其自己的预处理和模型构建形式。 结果表明,与三个CNN体系结构相比,汽车的性能出色,返回F 1分数为0。 82,而CNN返回得分为0。 41,0。 53和0。 62分别为50,InceptionV 3和VGG 16。 结果展示了汽车和CNN体系结构之间的大量学习差距,突显了汽车作为当今广泛使用的传统机器学习方法的潜在竞争者。自动化机器学习(AUTOML)算法,旨在简化此过程,并根据给定数据集自动构建模型体系结构。本论文研究了针对卷积神经网络(CNNS)Resnet 50,InceptionV 3和VGG 16的Autokeras(一种汽车算法)的性能,以实现面部情感识别的任务(FER)。CNN由于其专门的空间学习架构而经常用于FER任务。使用转移学习作为本文的主要方法,杠杆培训了CNN的预训练的成像网架构。所有预训练的层都被冷冻,并且完全连接的层和分类层例外。然后,在面部表情情绪的瓦阿赫加数据集上对他们进行培训。Autokeras在同一数据集上进行了培训,但是它是其自己的预处理和模型构建形式。结果表明,与三个CNN体系结构相比,汽车的性能出色,返回F 1分数为0。82,而CNN返回得分为0。41,0。53和0。62分别为50,InceptionV 3和VGG 16。结果展示了汽车和CNN体系结构之间的大量学习差距,突显了汽车作为当今广泛使用的传统机器学习方法的潜在竞争者。
人的大脑可以自我组织富有和多样化的稀疏神经途径,以逐步掌握数百项认知任务。但是,大多数现有的深层人工和尖峰神经网络的持续学习算法无法充分自动调节网络中有限的资源,这会导致性能下降,随着任务的增加,能源消耗的增加。在本文中,我们提出了一种脑启发的持续学习算法,并通过自适应重新组织神经途径,该途径采用自组织调节网络来重组单个和有限的神经网络(SOR-SNN),为丰富的稀疏神经途径,以有效地处理增量任务。所提出的模型表明,在各种持续学习任务的性能,能源消耗和记忆能力方面都具有一致的延长性,从类似孩子的简单任务到复杂的任务以及广义CIFAR100和Imagenet数据集。尤其是,SOR-SNN模型擅长学习更复杂的任务以及更多的任务,并能够将过去的知识与当前任务中的信息集成在一起,显示了促进旧任务的向后转移能力。同时,所提出的模型具有不可逆损害的自我修复能力,对于修剪的网络,可以自动分配从保留网络的新途径,以恢复记忆以获取被遗忘的知识。
项目:项目 / cifar10#i t取决于数据集种子:9999#i t的变化,用于标准化的运行#均值和标准偏差的变化取决于数据集的不同。 :[0.24697121432552785,0.2433893940435022,0.2615925905215076]早期_Stopping_patience:10 num_epochs:10 num_epochs:100适应#使用L r:5E -4#优化参数EPS:1E − 16#优化器参数验证_Metric:F1#f1 -score i用作v a l i i d a t i o n t i o n t i o pretration:true#foricednet -foricednet -fifficitynet -forificitynet the t i f1 _ r a t i o:0.8 v a l i d _ r a t i o:无#自动获得t e s t e s t _ r a t i o:无#自动获得Ensemble_module_list:#在集合中包含l o c a l o c a l o c a l地址
摘要 — 气候条件的变化和人口增加带来的消费增加,迫使农业领域发生变化。这种变化带来了一个问题,即如何在小范围内获得足够的天然产品。垂直农业选项成为供应链流程较短的可持续选项之一。此外,它有助于减少气候变化的影响并提高可持续性,因为它使用更少的水并避免诸如土壤干旱、土壤不育等问题。技术发展开始在农业领域迅速传播,并根据需要导致各种数字化转型。最近,智能农业的新概念通过高精度算法使农业更加高效和有效。最重要的农业应用是灌溉管理、病虫害防治、温室状况监测、土壤和水质监测、精准农业和奶牛管理。在本研究中,应用了机器学习方法,例如可以检测和识别植物疾病的 CNN 图像处理模型。在本研究中,提出了基于 AI 的生菜疾病检测系统。开发了一种 AI 模型来识别不同的生菜疾病。该模型是在 Tensorflow 上使用 ResNet50 和 ImageNet 构建的。还将各种过度拟合预防方法应用于模型以补偿有限的训练数据集,并讨论了研究结果。它将引导人们提高对使用各种机器学习技术和各种传统农业替代品以实现可持续发展的重要性和必要性的认识。
AI 被定义为计算机科学的一门学科,其重点是创造能够感知世界并表现得像人类的机器 (13)。最初的 AI 算法用于简单的数据分析,由程序员硬编码,无法识别未专门编程的模式 (14)。ML 是 AI 的一个子领域,其中算法可以识别和学习复杂数据集中的模式以产生智力预测,而不是通过显式编程 (14,15)。然而,大多数传统的 ML 算法仍然需要人工输入,并且此类算法能够评估的模式仍然相当简单。DL 可以被概念化为 ML 的一类,其中算法基于人工神经网络组织成许多处理层,类似于人脑。医学成像最常用的 DL 模型是卷积神经网络 (CNN) (16)(图 1),最初由 Fukushima 于 1980 年描述 (17)。LeCun 等人于 1989 年首次描述了使用反向传播训练 CNN 进行图像识别 (18)。2012 年,Krizhevsky 等人首次使用图形处理单元 (GPU) 训练 CNN 对物体进行分类,并因此赢得了 ImageNet 大规模视觉识别挑战赛 (19)。CNN 不需要人工干预即可进行复杂的数据分析 (20)。CNN 模仿人类大脑,神经元组织成多层 (21)
Vision Transformer 在包含数百万张图像的数据集上进行训练或预训练后,可以为图像分类任务提供出色的准确率,并且与卷积神经网络相比可以节省计算资源。受潜在准确率提升和计算资源节省的驱动,我们研究了用于加速磁共振图像重建的 Vision Transformer。我们表明,当在 fastMRI 数据集(一种仅包含数千张图像的流行加速 MRI 数据集)上进行训练时,针对图像重建量身定制的 Vision Transformer 可实现与 U-net 相当的重建准确率,同时享受更高的吞吐量和更少的内存消耗。此外,由于众所周知 Transformer 在进行大规模预训练时表现最佳,但 MRI 数据的获取成本高昂,我们提出了一种简单而有效的预训练方法,它完全依赖于大型自然图像数据集,例如 ImageNet。我们表明,对 Vision Transformer 进行预训练可显著提高加速 MRI 的训练数据效率,并增强对解剖结构变化的鲁棒性。在仅有 100 张 MRI 训练图像可用的条件下,预训练的 Vision Transformer 实现的图像质量明显优于预训练的卷积网络和当前最先进的技术。我们的代码可在 https://github.com/MLI-lab/transformers_for_imaging 上找到。关键词:加速 MRI、Transformer、预训练、图像重建