用于检测灌溉渠道系统中水泄漏的传统现场调查方法成本高昂且耗时。在本研究中,开发了一种快速、经济有效的方法来识别可能发生泄漏和/或渗漏的灌溉渠道位置。该方法涉及使用配备红色、近红外和热传感器的多光谱成像仪,该成像仪安装在飞机上并在低空飞行以收集图像。开发了一个三步流程,即图像采集、图像处理和现场侦察,用于处理图像和识别可能发生泄漏的位置。该方法在美国德克萨斯州的下里奥格兰德河谷进行了评估。收集了该地区 11 个灌溉区内 24 个选定渠道段的图像。图像评估表明,140 个地点可能存在渠道泄漏问题(点泄漏和/或渗漏)。制定了现场评估表,用于记录 28 个地点的泄漏类型和严重程度。确认有 26 个地点存在泄漏,成功率为 93%。本研究中使用的方法应广泛应用于检测灌溉渠道中的泄漏和渗漏。版权所有 # 2009 John Wiley & Sons, Ltd.
一些最引人注目的天体物理问题,如加速宇宙膨胀或星系形成的暗能量的性质,在很大程度上依赖于获取大量光谱数据样本的可能性。十八世纪的天文学家设想了经典的客观棱镜法,即通过与望远镜孔径大小相同的棱镜对天体进行成像。该方法可产生天体中每个光源的光谱。它特别适合明亮的光源,因为它有几个缺点:1) 整个光谱上积分的整个天空背景落在每个像素上,增加了噪声; 2) 如果不同光源的光谱沿色散方向排列,则它们的光谱会重叠; 3) 由于没有狭缝,有效分辨率取决于天体的表观大小。尽管存在这些问题,客观棱镜光谱法仍然在使用,因为它很简单,因为它可以使用光栅添加到传统成像仪中,光栅是一种表面蚀刻有光栅的棱镜,可保持所选中心波长的光不偏离。由于与地面相比,天体背景较低,因此它对于太空应用特别方便。哈勃太空望远镜上的成像仪器通常配备一个或多个光栅。还提出了以客观棱镜模式进行全天空勘测的专用卫星。1
牲畜具有很高的经济价值,并且经常在大型农场中对其进行监测是一项劳动密集的任务,而且昂贵。关于单个动物及其周围环境的智能数据的出现为早期发现和预防疾病,更好的动物护理和可追溯性,更好的可持续性和农场经济学开辟了新的机会。精确的牲畜农业(PLF)依靠牲畜数据的恒定和自动收集来支持农民,兽医和当局做出的专业知识和管理决定。无人机的高流动性与高水平的自主权,传感器驱动的技术和AI决策能力相结合可以为农民提供许多优势,从而利用大型农场的每个角落利用即时信息。这项研究的主要目标是i)探索各种基于无人机的基于视觉的遥感模式,尤其是视觉带感应和热成像仪,ii)ii)ii)ii)ii)ii)ii)ii)收集具有各种参数的数据,ii)ii)与研究人员建立良好的高级式富有融合式融合式融合式融合式融合的方法,以建立各种参数方式。收集的数据表明,可以利用从多种传感器模式获得的牲畜的独特特征的融合,以帮助农民通过PLF在大型农场中体验更好的牲畜管理。
实现空间NWP能力的主要障碍是缺乏近实时的中间大气状态测量来同化。在中层中唯一可用的气象观测来源是国防气象卫星计划(DMSP)特殊传感器微波成像仪/声音器(SSMIS)仪器的上部空气响料(UAS)通道提供的。 迄今为止,此数据已经未被充分利用,因为:1)典型的全局NWP模型不会跨越所需的垂直范围(表面至100 km),因此不包括中层; 2)在数据同化系统中使用的快速辐射转移(RT)模型缺乏对Zeeman效应对氧气分子与高于40 km高度的微波磁场范围内的氧气相互作用的明确处理。 社区辐射转移模型(CRTM)的版本2已实施了UAS通道所需的Zeeman分拆光谱计算。 在此海报中,我们评估了通过使用一致的剑术温度概况将辐射与CRTM计算进行比较,评估了UAS(UPP-UAS)通道新开发的SSMIS统一统一前处理器的实用性。 我们还展示了使用海军全球环境模型(NAVGEM)的示例UAS同化分析。在中层中唯一可用的气象观测来源是国防气象卫星计划(DMSP)特殊传感器微波成像仪/声音器(SSMIS)仪器的上部空气响料(UAS)通道提供的。迄今为止,此数据已经未被充分利用,因为:1)典型的全局NWP模型不会跨越所需的垂直范围(表面至100 km),因此不包括中层; 2)在数据同化系统中使用的快速辐射转移(RT)模型缺乏对Zeeman效应对氧气分子与高于40 km高度的微波磁场范围内的氧气相互作用的明确处理。社区辐射转移模型(CRTM)的版本2已实施了UAS通道所需的Zeeman分拆光谱计算。在此海报中,我们评估了通过使用一致的剑术温度概况将辐射与CRTM计算进行比较,评估了UAS(UPP-UAS)通道新开发的SSMIS统一统一前处理器的实用性。我们还展示了使用海军全球环境模型(NAVGEM)的示例UAS同化分析。
摘要 — 本研究的目的是通过微波辐射计对风暴和热带系统演示时间实验 (TEMPEST-D) CubeSat 任务和全球降水测量微波成像仪 (GMI) 上的降水系统的观测进行交叉验证。本文的目的有两个:首先,展示 TEMPEST-D 和 GMI 观测之间的一致性;其次,展示合并 TEMPEST-D 和 GMI 观测时增强时间采样的潜力。采用了两种交叉验证方法。第一种交叉验证方法是使用先验时空约束定量比较 TEMPEST-D 和 GMI 对降水系统的亮度温度 (TB) 观测。对比分析表明,两种仪器的TB观测值具有相似的概率分布,平均绝对差为2.9 K。第二种交叉验证方法是定量比较TEMPEST-D和GMI TB对热带气旋系统的观测结果。本对比研究分析了三个风暴案例。分析表明,TEMPEST-D和GMI TB观测中的风暴结构和强度相似,总体平均相关系数(r)为0.9。与单独使用GMI数据相比,结合TEMPEST-D和GMI TB对飓风系统的观测可将采样频率提高2.5倍。
4AOP 自动大气吸收图集操作版本 6SV1 太阳光谱中卫星信号的第二次模拟,版本 1 ASCII 美国信息交换标准代码 ANOVA 方差分析 ASTER 先进星载热发射和反射辐射计 BRDF 双向反射分布函数 CASI 紧凑型机载光谱成像仪 CDOM 有色溶解有机物 CRTM 社区辐射传输模型 CNES 法国国家空间研究中心 CRTM 社区辐射传输模型 CRTM 社区辐射传输模型 CZCS 沿海区彩色扫描仪 ENVISAT 环境卫星 ESA 欧洲空间局 FOV 视场 GDAL 地理空间数据抽象库 GIS 地理信息系统 GPS 全球定位系统 GRASS 地理资源分析支持系统 GRETL GNU 回归、计量经济学和时间序列库 HCMR 希腊海洋研究中心 GUI 图形用户界面HyMap 高光谱测绘仪 ILWIS 综合陆地和水域信息系统 iPAQ internet CompAQ 出品的掌上电脑 KOPRA Karlsruhe 优化和精确辐射传输算法 LAD 最小绝对偏差 LAI 叶面积指数 Landsat TM Landsat 专题测绘仪 Landsat ETM+ Landsat 增强专题测绘仪 Plus MERIS 中分辨率成像光谱仪 MIPAS 用于被动大气探测的迈克尔逊干涉仪 MODIS 中分辨率成像光谱辐射计 NASA 美国国家航空航天局
摘要:纳豆激酶 (NK) 是一种强效的溶栓酶,可溶解血栓,在心血管疾病的治疗中被广泛使用。然而,由于其高分子量和蛋白质性质,稳定性和生物利用度问题使其有效输送仍然很困难。在本研究中,我们通过反相蒸发法开发了新型 NK 负载非靶向脂质体 (NK-LS) 和靶向脂质体 (RGD-NK-LS 和 AM-NK-LS)。通过 Zetasizer、SEM、TEM 和 AFM 进行物理化学表征 (粒度、多分散性指数、zeta 电位和形态)。Bradford 测定和 XPS 分析证实了靶向配体的表面结合成功。通过 CLSM、光子成像仪 optima 和流式细胞术进行的血小板相互作用研究表明,靶向脂质体的血小板结合亲和力明显较高 (P < 0.05)。使用人体血液和 CLSM 成像进行的纤维蛋白溶解研究进行了体外评估,证明了 AM-NK-LS 具有强大的抗血栓功效。此外,出血和凝血时间研究表明靶向脂质体没有任何出血并发症。此外,使用多普勒流量计和超声/光声成像对 Sprague-Dawley (SD) 大鼠体内 FeCl 3 模型进行的体内实验表明,靶向脂质体对血栓部位的血栓溶解率增加且具有强大的亲和力。此外,体外血液相容性和组织病理学研究证明了纳米制剂的安全性和生物相容性。关键词:纳豆激酶、血栓溶解、纤维蛋白溶解、血栓靶向、光声成像
基于微波辐射与降水相互作用的基本关系,微波卫星降水估计最有望从太空定量估计降雨量。目前,DMSP 专用传感器微波成像仪 (SSM/I) 上的低分辨率通道采样的空间分辨率比典型对流雨带中降雨产生的尺度大几倍。机载仪器可以提供降水云的详细微波辐射特性视图。在本文中,作者展示了 1993 年在西太平洋进行的热带海洋全球大气耦合海洋-大气响应实验期间收集的同步精细尺度(1-3 公里分辨率)共置飞机辐射和飞机降水雷达测量值。通过故意将飞机数据集的分辨率从其原始分辨率降低到当前和未来的星载传感器的分辨率,检查了传感器分辨率对组合辐射计-雷达垂直剖面降雨反演算法(为降水比对计划 2 开发和使用)的影响。雷达剖面的增加对柱状霰含量的反演值的影响大于柱状雨含量。柱状霰的反演值也明显小于之前公布的陆地降雨结果。结果
最佳云分析 (OCA) 算法最初是在 1997 年授予卢瑟福阿普尔顿实验室 (RAL) 的一项研究中开发的,并于 2001 年编码为原型系统。该算法由 EUMETSAT 进一步开发,旨在提供 Meteosat 第二代 (MSG) 旋转增强可见光和红外成像仪 (SEVIRI) 仪器的 Day-2 产品。最新版本的操作算法允许识别多层云情况并检索双层场景的云属性 (Watts 等人,2011)。OCA 还提供了由最佳估计方法得出的不确定性的估计。自 2013 年 6 月以来,OCA 产品已作为演示产品以全重复周期 (15 分钟) 频率进行操作生成。OCA 检索到的云属性包括云顶压力、云光学厚度和云有效半径。OCA 算法已针对气候数据记录处理进行了轻微调整。调整主要在于使用不同的输入,因为用于近实时 (NRT) 的输入不适用于重新处理(云掩模、晴空反射图),并且在整个时间段内也不均匀(重新分析)。验证报告 (EUMETSAT, 2021) 中提供了 NRT 和 CDR 产品之间的差异。OCA Release 1 气候数据记录 (CDR) 涵盖了从 2004 年到 2019 年的 MSG 观测期,提供了均匀的云属性时间序列,它将 NRT 产品的时间延长了 9 年多。OCA Release 1 计划用作生成新的大气运动矢量 (AMV) CDR 的输入,并可能包括风矢量高度的不确定性估计。
4AOP 自动大气吸收图集业务版本 6SV1 太阳光谱中卫星信号的第二次模拟,版本 1 ASCII 美国信息交换标准代码 ANOVA 方差分析 ASTER 先进星载热发射和反射辐射计 BRDF 双向反射分布函数 CASI 紧凑型机载光谱成像仪 CDOM 有色溶解有机物 CRTM 社区辐射传输模型 CNES 法国国家空间研究中心 CRTM 社区辐射传输模型 CRTM 社区辐射传输模型 CZCS 沿海区彩色扫描仪 ENVISAT 环境卫星 ESA 欧洲航天局 FOV 视场 GDAL 地理空间数据抽象库 GIS 地理信息系统 GPS 全球定位系统 GRASS 地理资源分析支持系统 GRETL GNU 回归、计量经济学和时间序列库 HCMR 希腊海洋研究中心 GUI 图形用户界面 HyMap高光谱测绘仪 ILWIS 综合陆地和水域信息系统 iPAQ internet CompAQ 出品的掌上电脑 KOPRA Karlsruhe 优化和精确辐射传输算法 LAD 最小绝对偏差 LAI 叶面积指数 Landsat TM Landsat 专题测绘仪 Landsat ETM+ Landsat 增强专题测绘仪 Plus MERIS 中等分辨率成像光谱仪 MIPAS 用于被动大气探测的迈克尔逊干涉仪 MODIS 中分辨率成像光谱辐射计 NASA 美国国家航空航天局