摘要 —锂离子电池因其诱人的优势而成为储能系统的领先技术。然而,锂离子电池的安全性是一个主要问题,因为它们的工作条件在温度、电压和充电状态方面受到限制。因此,监测锂离子电池的状态以保证安全运行非常重要。为此,在目前的研究中,我们分析了电化学阻抗谱 (EIS) 作为估算电池温度的工具。在不同的充电状态下进行 25°C 至 140°C 的过热滥用测试,并在测试期间获得 EIS 测量值。分析了温度对不同频率下电池阻抗的影响并揭示了新的发现。阻抗的实部被确定为通过 EIS 估算电池温度的最佳指标。此外,根据实验结果,提出了实现精确温度监测的最佳频率,避免充电状态变化产生的干扰。最后,EIS 被证明是一种可靠的过温和热失控检测技术。索引词 — 锂离子电池、安全性、电化学阻抗谱、阻抗、温度估算
近年来,可再生能源渗透率的提高造成了新的拥堵模式。由于电网不是为新模式设计的,运营商可能需要削减可再生能源,以将传输流量保持在可接受的范围内。使用灵活交流输电系统 (FACTS) 设备的输电线路阻抗控制已被提议作为一种缓解输电系统拥堵和提高可再生能源利用率的方法。在本文中,我们进行了一项全面的研究,以深入了解 FACTS 实施对可再生能源整合和碳减排的影响。该研究考虑了可再生能源渗透率、系统负载模式、可再生能源发电位置和 FACTS 设备位置的变化。此外,还使用了来自著名区域输电组织 (RTO) 的发电组合数据来获得更现实的结果。对具有两阶段随机机组组合模型的改进型 RTS-96 系统进行了模拟研究。结果表明,尽管阻抗控制在降低成本方面是有效的,但它在促进具有著名廉价化石燃料发电厂的系统中可再生能源整合方面存在局限性。
摘要:为使锂离子电池保持安全运行状态并优化其性能,迫切需要对健康状态(SOH)进行精确评估,该状态指示锂离子电池的退化程度。本文提出了一个回归机器学习框架,该框架结合了卷积神经网络(CNN)和电化学阻抗谱(EIS)的奈奎斯特图作为特征来估计锂离子电池的SOH,显著提高了SOH估计的准确性。结果表明,基于EIS特征的奈奎斯特图比简单的阻抗值提供了有关电池老化的更详细信息,因为它能够反映阻抗随时间的变化。此外,与使用DNN模型的简单阻抗值以及其他传统机器学习方法(如高斯过程回归(GPR)和支持向量机(SVM))相比,CNN模型中的卷积层在从EIS测量数据中提取不同级别的特征和表征锂离子电池的退化模式方面更有效。
在本研究中,我们分析了锂离子电池的局部非线性电化学阻抗谱 (NLEIS) 响应,并从测量的 NLEIS 数据中估算模型参数。该分析假设单粒子模型包括电极粒子内锂的非线性扩散和其表面的不对称电荷转移动力学。基于此模型并假设一个中等较小的激励幅度,我们系统地推导出直至二次谐波响应的阻抗的解析公式,从而可以根据模型中的物理过程和非线性对每个贡献进行有意义的解释。我们探讨了这对参数化的影响,包括使用最大似然进行结构识别分析和参数估计,同时使用了合成和实验测量的阻抗数据。可以精确拟合阻抗数据,但拟合的扩散时间尺度的不一致性表明非线性扩散模型可能不适用于所考虑的电池。还通过使用参数化模型预测时域电压响应来证明模型验证,并且结果表明这与测量的电压时间序列数据 (11.1 mV RMSE) 具有出色的一致性。© 2023 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款分发 (CC BY,http://creativecommons.org/licenses/ by/4.0/ ),允许在任何媒体中不受限制地重复使用作品,前提是对原始作品进行适当的引用。[DOI:10.1149/ 1945-7111/acada7 ]
摘要:缆索驱动机械手具有手臂细长、运动灵活、刚度可控等特点,在捕获在轨卫星方面有着很大的应用前景,但由于缆索长度、关节角度和反作用力之间的耦合关系,难以实现缆索驱动机械手的有效运动规划和刚度控制。该算法还可以通过动态设置加加速度使加速度更加平滑,减小加速度冲击,保证缆驱动机械手的稳定运动。再次,通过采用基于位置的阻抗控制来补偿驱动缆的位置和速度,进一步优化缆驱动机械手的刚度。最后,开发并测试了变刚度缆驱动机械手样机,利用卷积动态加加速度规划算法规划出所需的速度曲线,进行了缆驱动机械手的速度控制实验,结果验证了该算法可以提高加速度的平滑度,从而使运动更加平滑,减小振动。此外,刚度控制实验验证了缆驱动机械手具有理想的变刚度能力。
摘要 - 这项工作解决了完全致命的空中自动驱动器的交互控制问题。,我们使用几何一致的可变刚度阻抗控制解决问题,以使用能源罐的概念进行安全扳手调节,其中建模和控制均在汉密尔顿港框架中进行。我们利用了地面操纵器的文献中以前的众所周知的结果,并将其扩展为新颖和挑战的空中物理相互作用,重点是准静态应用。提出的控制方法的能量意识确保了空中机器人在自由交界和接触式SCENARIOS中的稳定性,以及与未知环境的接触式损失的情况下的一定程度。此外,通过利用键图,我们演示了如何以图形方式进行闭环的被动性。我们提出的方法的有效性通过多个实验显示。我们还提供了一些有关如何将提出的框架扩展到通用动态空中物理相互作用的见解。
摘要电池是一种电化学系统,可以被视为一个黑匣子,没有实用的方式,可以以负担得起的成本观察内部的过程。幸运的是,电化学系统中的大多数物理和化学过程都可以通过其独特的特征时间常数来区分。电化学阻抗光谱(EIS)是一种强大的技术,可以根据电池的频率响应来区分内部过程。EIS已成功地识别相关的电化学机制和电池参数,因此可以与基于模型的电池管理系统(BMS)集成,这对于改善电池寿命和性能至关重要。在本文中,我们提供了对不同的模拟策略的看法,用于建模锂离子电池的阻抗响应,BMS中EIS模型的实现以及与实现计算有效方法相关的一些挑战。
手稿收到2022年5月6日;修订于2022年7月5日; 2022年7月15日接受。出版日期2022年8月16日;当前版本的日期2022年9月8日。这项工作得到了欧洲领导力(ECSER)联合企业的电子组件和系统的支持(JU),根据赠款101007247; JU获得了欧盟2020年Horizon的研究与创新计划的支持,以及芬兰,德国,爱尔兰,瑞典,意大利,奥地利,冰岛和瑞士的支持。副编辑协调审核过程的是Chao Tan博士。(通讯作者:Roberta Ramilli。)Roberta Ramilli,Marco Crescentini和Pier Andrea Traverso在电气,电子和信息工程部(DEI),“ G。Marconi,“博洛尼亚大学,意大利博洛尼亚40136(电子邮件:Roberta。) ramilli@unibo.it; m.crescentini@unibo.it; pierandrea.traverso@unibo.it)。 Francesco Santoni,Alessio de Angelis和Paolo Carbone与佩鲁吉亚大学工程系,意大利佩鲁吉亚06125(电子邮件:francesco.santoni@unipg.it; Alessio.deangelis@deangelis@unipg.it; Paolo; Paolo; Paolo。 carbone@unipg.it)。 数字对象识别10.1109/tim.2022.3196439Marconi,“博洛尼亚大学,意大利博洛尼亚40136(电子邮件:Roberta。ramilli@unibo.it; m.crescentini@unibo.it; pierandrea.traverso@unibo.it)。Francesco Santoni,Alessio de Angelis和Paolo Carbone与佩鲁吉亚大学工程系,意大利佩鲁吉亚06125(电子邮件:francesco.santoni@unipg.it; Alessio.deangelis@deangelis@unipg.it; Paolo; Paolo; Paolo。carbone@unipg.it)。数字对象识别10.1109/tim.2022.3196439
由于它们的无标签和无创性,阻抗测量吸引了对生物学研究的兴趣日益增加。微观加工和集成电路技术的进步已经为使用大型微电极阵列开辟了一条途径,以实时,高型时静态分辨率的阻抗测量生物样品。在这篇综述中,我们讨论了在体外应用中使用微电极阵列进行阻抗成像的不同方法和测量阻抗的应用。我们首先介绍电极配置和阻抗分析的频率范围如何确定可以提取的信息。然后,我们深入研究相关的电路拓扑,可用于实施阻抗测量及其特征特征,例如分辨率和数据收购时间。之后,我们详细介绍了针对新的阻抗成像设备的设计注意事项。我们通过讨论在生物医学研究中应用阻抗成像的未来领域,特别是无法进行光学成像的应用,例如监测离体组织切片或基于微电极的脑植入物。
大量的皮肤准备和使用被水凝胶“浸湿”的电极。这个过程通常需要经过培训的专业人员进行,但可以得到高信噪比 (SNR) 的记录,而这对于恢复性和可能改变生活的治疗来说是必需的。这些湿电极水凝胶可确保电极与皮肤的一致和低阻抗接触,直到凝胶变干。这种干燥会导致电极-皮肤阻抗 (ESI) 增加,从而降低记录的单次幅度并增加对电源线干扰的敏感性,最终降低 SNR。[4] 湿电极所需的皮肤准备(特别是在用于睡眠/癫痫研究的 EEG 设置中)也经常导致皮肤刺激、脱发 [5] 和头发中残留凝胶引起的不适。一些人试图通过结合通用的半干和干电极将这些临床技术扩展到日常用户。半干电极使用的水凝胶要少得多,这些水凝胶要么预先涂抹,要么储存在电极上的储存器中。 [6–9] 这些半干电极比湿电极更舒适,且能达到相似的 ESI,但仍需要一些电解质,并且可能存在过度释放(这有引起桥接的风险)等控制问题。全干电极进一步提高了可用性和患者舒适度,但通常会产生比湿电极(10-100 sk Ω s,< 250 Hz)更高的 ESI(> 1 M Ω s,< 250 Hz)。[10] 微针、针电极、导电复合材料和共形电极已被用来降低 ESI 并提高干电极的机械稳定性,[10–12] 但会带来新的用途或制造权衡。微针可以刺穿皮肤表层,实现更低的 ESI 并实现更高的 SNR 记录。然而,长时间使用这些电极可能会导致病变形成并带来感染风险。非接触式导电复合材料(如硅碳黑和银玻璃硅)则表现出相反的权衡,与其他干电极相比,它们实现了更高的舒适度,但 ESI 更高。[10,11,13] 其他电极阵列已使用柔性平面结构、机加工金属或金属印刷设备来提高电极的柔顺性、舒适度和传感位置的可能性。[14–17] 印刷柔性电极阵列可实现高密度电极放置、高分辨率 2D 设计、非真空大批量制造以及舒适的电极柔顺性