我们报告了在六方氮化硼封装的双栅极单层 WS2 中的电子传输测量结果。使用从室温到 1.5 K 工作的栅极欧姆接触,我们测量了本征电导率和载流子密度随温度和栅极偏压的变化。本征电子迁移率在室温下为 100 cm2/(Vs),在 1.5 K 下为 2000 cm2/(Vs)。迁移率在高温下表现出强烈的温度依赖性,与声子散射主导的载流子传输一致。在低温下,由于杂质和长程库仑散射,迁移率达到饱和。单层 WS2 中声子散射的第一性原理计算与实验结果高度一致,表明我们接近这些二维层中传输的本征极限。
水是所有人类活动的必要组成部分。根据联合国世界水评估计划,每天,200万吨污水,制造和农业废物被排放到世界水中。由于人口需求和减少清洁水供应以及可用的水污染管理机制;迫切需要使用计算方法智能管理可用的水。本文提出了人工神经网络,特别是卷积神经网络(CNN),用于自动化水杂质检测。为了完善模型,使用管道中的浑浊水的图片来检测事件。深度学习的算法通过4220张图像的数据集进行了大量培训后达到96.3%的准确性,反映了各种污染的污染。这表明该模型可用于水系统污染检测。
特定的电能消耗为(11.5 - 13 kWh/kg SI),进入该工艺的碳材料代表相似的能源贡献。将大约一半的能量保留为Si金属中的化学能。碳足迹范围从4.7 kg CO 2 /kg Si到16千克CO 2 /kg Si),具体取决于该过程中使用的能源的类型(Xiao等,2010;Sævarsdottir等人,2021年)。由碳热过程产生的MG-SI的纯度约为98%和99%。电子级硅(杂质含量<1 ppb)和太阳级硅(杂质含量<1 ppm)用于各种应用,例如在光伏和电子产品中(Suzdaltsev,2022年)。用于从MG-SI生产高纯度硅的常规技术是西门子的工艺,它具有高能量消耗和低生产率(Chigondo,2018),或者使用流体化的床工艺(Arastoopour等,2022年)。另一种方法是Si在熔融盐中的电沉积,预计会产生高纯硅。如果所使用的阳极不耗时并且不产生CO 2,则与常规过程相比,碳足迹可以显着降低,如果用于电解的电力是可续签或核能的。已经证明,具有不同形态学的si膜可以电化学地沉积在不同的熔融盐中,例如氯化物,氟化物和氯化物 - 氟化物(Juzeliu Nas和Fray,2020年)。这些盐中的每一个都有优势和缺点;氯化物熔体是高度水溶性的,但沉积的胶片薄(<10 µm)。同时,沉积在浮力物中沉积的胶片是致密的,但是粘附在沉积物上的盐很难轻易去除。si可以通过将Si源/前体(例如SiO 2,Na 2 Sif 6,K 2 SIF 6和SICL 4)添加到熔融盐中来沉积。Si前体分解为Si(IV)电活性离子,该离子通过基于盐类型的一步或两步减少机制减少。
摘要:本文提出了一种控制策略,可减轻高压碱性电解槽中 H 2 和 O 2 的交叉污染,从而提高供应气体的纯度。为了减少气体通过膜的扩散,控制器根据系统压力和两个分离室之间的液位差来确定两个出口阀的开度。因此,这里设计了一个多输入 - 多输出最优控制器。为此,简化了一个可用的高保真模型,以获得一个面向控制的模型。在宽工作范围内使用高保真非线性模型对所提出的控制器进行了模拟评估,并与一对解耦 PI 控制器进行了比较。在所有情况下,产生的气体杂质均低于 1%。
点蚀是局部腐蚀的一种重要形式,它始于材料上的一小块区域,并逐渐扩展,在表面形成难以察觉的较深凹坑 [1]。在此过程中会形成半球形或杯形的凹坑或孔洞 [16],被杂质或水覆盖的区域作为阳极,未被覆盖的区域作为阴极。在这种腐蚀类型中,金属的溶解被认为是由电化学机制控制的 [17]。不锈钢、铝和铁极易发生点蚀,这是一种特别危险的腐蚀形式 [1]。尽管不锈钢通常具有耐腐蚀性(含有铬和镍 [18-22]),但由于其保护性氧化膜受到局部侵蚀,不锈钢等材料仍会发生点蚀 [1]。
已对硅粘结熔模铸造模具的故障机制进行了调查,目的是降低较大部件的故障率。分析首先使用扫描电子显微镜和其他相关分析技术对当前商用模具系统进行详细的微观结构检查。模具结构显示不均匀且不可预测,陶瓷成分填充不良导致孔隙网络不均匀。还确定了粘合剂的结构和分布,这表明模具内的主要承载点由薄的二氧化硅区域组成。因此,模具的整体性能与二氧化硅本身的性能直接相关。这种粘合剂显示含有在模具制造过程中的各个阶段从陶瓷填料中浸出的杂质元素。这些元素会改变粘合剂的相组成和热性能。
摘要 识别和量化 1,3-丁二烯中的痕量杂质对于生产高质量的合成橡胶产品至关重要。标准分析方法采用氧化铝 PLOT 柱,该柱对低分子量烃具有良好的分辨率,但对极性烃具有不可重复性和较差的灵敏度。在本研究中,Rt®-氧化铝 BOND/MAPD PLOT 柱用于分离常见的轻极性污染物(包括甲基乙炔和丙二烯)以及 4-乙烯基环己烯(这是一种高分子量杂质,通常需要在另一根色谱柱上进行第二次测试)。通过使用采用色谱柱整个温度范围的扩展温度程序,可以在一次测试中分析 4-乙烯基环己烯以及 1,3-丁二烯中所有典型的低分子量杂质。
PH-UY 2344 现代和固体物理学导论 (4 学分) 通常在春季提供 狭义相对论、迈克尔逊莫雷实验。普朗克量子假设、光电效应、康普顿效应、卢瑟福散射、玻尔原子、德布罗意波长、电子衍射、波函数、不确定性原理、薛定谔方程。应用于:方阱势、单电子原子。原子核、裂变和聚变。周期性晶格中的能带、Kronig Penney 模型、价带、导带、杂质态、电子迁移率。半导体特性。超导简介;电子对、能隙、约瑟夫森效应。| 先决条件:PH-UY 2023;共同要求:PH-UY 2033 和 MA-UY 2034。评分:Ugrd Tandon 评分可重复获得额外学分:否
作为全球领先的工业气体和工程公司,琳德通过提供高质量的解决方案,技术和服务,使锂电池的世界每天都在使锂电池的生产更加生产力。我们与锂电池客户一起从研发和飞行员量表到大规模生产。通过我们的专有天然气生产技术和专业知识,我们与R&D和飞行员量表的锂电池客户合作,确定最适合其流程的最佳气体供应和杂质控制。随着我们的客户进行大规模生产,他们可以以优化的总体使用成本来利用较早的学习,并具有一流的安全性,质量和可靠性。我们的全球影响力还可以确保当客户在不同地区开始设施时,无缝复制。
•交换问答1.3和1.4的顺序以提供更合乎逻辑的顺序•在问答2.1中,对ICH Q11进行了指定,以定义半合成药物物质和产品•在Q&A 7.2和7.3中,其他解释是为何不足以将In Vivo突变数据添加到足够的情况下,以设置复杂性的含量。However, the Q&A enables the use of in vivo assay results to complement available data for a weight of evidence approach to support a higher limit on a case by case basis • In Q&A 8.1 conditions for using option 4 control strategies are explained in more detail • Q&A 8.3 was reworded to provide more clarity on expectations for control approaches of impurities introduced in the last synthetic step • In Q&A 9.2 additional specific references are added for recommendations on content ICH M7风险评估和控制策略的CTD中的位置