抽象的量子技术是物理和工程领域的扩展领域,该方案的开发是基于量子力学的增强或新颖应用的协议和设备的开发。这包括量子计算和量子通信。量子计算机承诺基于与光学和仿真问题相关的叠加以及大量分解的计算速度 - 对我们的经典加密方案构成威胁。量子通知通过根据量子力学定律提供无条件安全的通信通道来解决此问题。此外,量子通信将允许在远程量子计算机之间交换量子信息,从而启用分布式量子计算。连接量子计算机或处理器的基础结构称为量子网络。网络节点处的固定量子位用于执行信息处理或存储操作,而频率量子位连接节点并启用量子信息的传输。光子是出色的量子位,因为它们以光速传播并且具有较小的相互作用横截面。因此,量子网络需要光的量子状态来提供量子量。这些光的量子状态需要纠缠,难以区分和波长匹配,以使它们要么在网络中经历较低的传输损失,要么可以与其他量子技术(如基于原子的量子记忆)接触。在本文中,已经研究了单个自组装的光学活性半导体量子点的单个,无法区分或纠缠的光子的发射,我们选择的量子发射器。所研究的量子点在电信范围内发射或接近rubidium中的D 1-转换。在本论文中执行的实验的主要方面是通过使它们使它们的波长(可降低)来研究发射器到未来的量子网络中,并将它们整合到光子结构中并采用谐振激发方案,以使光子具有不预定的纯度纯度,难以置信的区别能力或实用的相关性。在电信范围内,我们研究了INASP纳米线量子点,其发射的发射从接近界面范围转移到电信O – band和c – band。单个光子发射以类似于其近红外对应物类似的量子点的衰减时间。此外,在电信C带中排放的INAS/GAAS量子点集成到压电 - 电动子板上,并通过使用商业
能够生长出二维 (2D) 材料等尖端晶体材料的高质量异质外延膜,是开发前沿技术应用的先决条件。二维材料(及其异质结构)是一种堆叠结构,相邻块之间具有弱范德华 (vdW) 相互作用,而每个块内具有强共价键。这一特性使得我们有可能分离二维晶片,将其用作构建块,以创建堆叠的二维晶体序列(称为 vdW 异质结构),这种结构具有新奇的特性和奇特的物理现象。[1,2] vdW 异质结构为电子学、光电子学、柔性器件、传感器和光伏等领域的广泛应用铺平了道路。[3–5] 然而,要实现工业化应用,就必须发展大规模沉积,这就意味着必须掌握 vdW 外延生长技术。 [6] 尽管过去几年人们对范德华外延的兴趣重新燃起,研究工作也愈发深入,[7] 但对范德华外延的一般描述和完整理解将有助于快速解决许多问题。例如,当使用石墨烯或其他二维晶体作为缓冲层时,对于范德华外延,下面的衬底仍可能与正在生长的薄膜相互作用。[8–15] 人们还观察到了二维和三维材料生长之间的中间行为,实际上允许在这些材料中进行应变工程。[16–21] 因此,二维材料的外延规则非常有必要,以便预测衬底表面相互作用、范德华异质结构可比性和界面生长过程中的应变弛豫。范德华能隙的形成是决定二维材料行为的基本特征。[22] 在这方面,衬底表面的电子特性和形貌在薄膜生长的早期阶段起着关键作用。生长中的薄膜和基底之间的键可以形成在悬空键和缺陷上[13,23],也可以形成在扭结和台阶边缘,从而阻止范德华能隙的形成并决定应变的积累。[16]基底和外延层之间的不同对称性也会引起一定量的应变。[24]因此,如果沉积的2D材料没有完全弛豫,则不会发生范德华外延。为了对范德华外延进行一般性描述,我们在这里研究了一个基于硫族化物 (GeTe) m (Sb 2 Te 3 ) n 合金 (Ge-Sb-Te 或 GST) 的示例案例,该合金位于 InAs(111) 表面上。GST 是一种关键的相变材料 (PCM),因其尖端技术应用而得到广泛研究。它是一种突出的
概述 光子是无质量的基本粒子,可用于量子通信、计算和计量应用。为了满足这些应用的科学标准,需要具有独特特性的单光子。本项目开发了紧凑高效的单光子源,以及用于表征这些源的合适测量技术。 项目需求 能够安全地传输数据越来越重要。目前,这是使用加密来实现的,但有可能拦截这些通信并破解加密。量子通信和计算有可能成为下一代加密技术并提供安全传输。使用光子信号意味着可以检测到任何信号中断,并且无法复制传输。量子通信和计算依赖于传输具有特定特性的单个光子。虽然目前有几种不同的技术正在开发用于量子计算和量子信息处理,但光子特别具有吸引力,因为它们可以以光速传播,与周围环境相互作用较弱,并且可以通过线性光学进行操纵。传输依赖于单个粒子,这意味着在发送者和接收者不知情的情况下无法拦截。单光子源的开发将是 k
本论文研究基于近端 InAs/Al 纳米线的超导量子比特。这些量子比特由半导体约瑟夫森结组成,并呈现了 transmon 量子比特的门可调导数。除了门控特性之外,这个新量子比特(gatemon)还根据操作方式表现出完全不同的特性,这是本论文的主要重点。首先,系统地研究了 gatemon 的非谐性。在这里,我们观察到与传统 transmon 结果的偏差。为了解释这一点,我们推导出一个简单的模型,该模型提供了有关半导体约瑟夫森结传输特性的信息。最后,我们发现该结主要由 1-3 个传导通道组成,其中至少一个通道的传输概率达到大于 0.9 的某些门电压,这与描述传统 transmon 结的正弦能量相位关系形成鲜明对比。接下来,我们介绍了一种新的门控设计,其中半导体区域作为场效应晶体管运行,以允许通过门控设备进行传输,而无需引入新的主导弛豫源。此外,我们展示了传输和过渡电路量子电动力学量子比特测量之间的明显相关性。在这种几何结构中,对于某些栅极电压,我们在传输和量子比特测量中都观察到量子比特谱中的共振特征。在共振过程中,我们仔细绘制了电荷弥散图,在共振时,电荷弥散显示出明显抑制的数量级,超出了传统的预期。我们通过几乎完美传输的传导通道来解释这一点,该通道重新规范了超导岛的电荷。这与开发的共振隧穿模型在数量上一致,其中大传输是通过具有近乎对称的隧道屏障的共振水平实现的。最后,我们展示了与大磁场和破坏性 Little-Parks 机制中的操作的兼容性。当我们进入振荡量子比特谱的第一叶时,我们观察到出现了额外的相干能量跃迁。我们将其解释为安德烈夫态之间的跃迁,由于与 Little-Parks 效应相关的相位扭曲,安德烈夫态在约瑟夫森结上经历了路径相关的相位差。这些观察结果与数值结模型定性一致。
能够生长出二维 (2D) 材料等尖端晶体材料的高质量异质外延膜,是开发前沿技术应用的先决条件。二维材料(及其异质结构)是一种堆叠结构,相邻块之间具有弱范德华 (vdW) 相互作用,而每个块内具有强共价键。这一特性使得我们有可能分离二维晶片,将其用作构建块,以创建堆叠的二维晶体序列(称为 vdW 异质结构),这种结构具有新奇的特性和奇特的物理现象。[1,2] vdW 异质结构为电子学、光电子学、柔性器件、传感器和光伏等领域的广泛应用铺平了道路。[3–5] 然而,要实现工业化应用,就必须发展大规模沉积,这就意味着必须掌握 vdW 外延生长技术。 [6] 尽管过去几年人们对范德华外延的兴趣重新燃起,研究工作也愈发深入,[7] 但对范德华外延的一般描述和完整理解将有助于快速解决许多问题。例如,当使用石墨烯或其他二维晶体作为缓冲层时,对于范德华外延,下面的衬底仍可能与正在生长的薄膜相互作用。[8–15] 人们还观察到了二维和三维材料生长之间的中间行为,实际上允许在这些材料中进行应变工程。[16–21] 因此,二维材料的外延规则非常有必要,以便预测衬底表面相互作用、范德华异质结构可比性和界面生长过程中的应变弛豫。范德华能隙的形成是决定二维材料行为的基本特征。[22] 在这方面,衬底表面的电子特性和形貌在薄膜生长的早期阶段起着关键作用。生长中的薄膜和基底之间的键可以形成在悬空键和缺陷上[13,23],也可以形成在扭结和台阶边缘,从而阻止范德华能隙的形成并决定应变的积累。[16]基底和外延层之间的不同对称性也会引起一定量的应变。[24]因此,如果沉积的2D材料没有完全弛豫,则不会发生范德华外延。为了对范德华外延进行一般性描述,我们在这里研究了一个基于硫族化物 (GeTe) m (Sb 2 Te 3 ) n 合金 (Ge-Sb-Te 或 GST) 的示例案例,该合金位于 InAs(111) 表面上。GST 是一种关键的相变材料 (PCM),因其尖端技术应用而得到广泛研究。它是一种突出的
能够生长出二维 (2D) 材料等尖端晶体材料的高质量异质外延膜,是开发前沿技术应用的先决条件。二维材料(及其异质结构)是一种堆叠结构,相邻块之间具有弱范德华 (vdW) 相互作用,而每个块内具有强共价键。这一特性使得我们有可能分离二维晶片,将其用作构建块,以创建堆叠的二维晶体序列(称为 vdW 异质结构),这种结构具有新奇的特性和奇特的物理现象。[1,2] vdW 异质结构为电子学、光电子学、柔性器件、传感器和光伏等领域的广泛应用铺平了道路。[3–5] 然而,要实现工业化应用,就必须发展大规模沉积,这就意味着必须掌握 vdW 外延生长技术。 [6] 尽管过去几年人们对范德华外延的兴趣重新燃起,研究工作也愈发深入,[7] 但对范德华外延的一般描述和完整理解将有助于快速解决许多问题。例如,当使用石墨烯或其他二维晶体作为缓冲层时,对于范德华外延,下面的衬底仍可能与正在生长的薄膜相互作用。[8–15] 人们还观察到了二维和三维材料生长之间的中间行为,实际上允许在这些材料中进行应变工程。[16–21] 因此,二维材料的外延规则非常有必要,以便预测衬底表面相互作用、范德华异质结构可比性和界面生长过程中的应变弛豫。范德华能隙的形成是决定二维材料行为的基本特征。[22] 在这方面,衬底表面的电子特性和形貌在薄膜生长的早期阶段起着关键作用。生长中的薄膜和基底之间的键可以形成在悬空键和缺陷上[13,23],也可以形成在扭结和台阶边缘,从而阻止范德华能隙的形成并决定应变的积累。[16]基底和外延层之间的不同对称性也会引起一定量的应变。[24]因此,如果沉积的2D材料没有完全弛豫,则不会发生范德华外延。为了对范德华外延进行一般性描述,我们在这里研究了一个基于硫族化物 (GeTe) m (Sb 2 Te 3 ) n 合金 (Ge-Sb-Te 或 GST) 的示例案例,该合金位于 InAs(111) 表面上。GST 是一种关键的相变材料 (PCM),因其尖端技术应用而得到广泛研究。它是一种突出的
多个纠结光子的量子状态构成了基于测量的量子计算和全光量子量子中心中继器的重要资源。然而,这种状态的产生具有挑战性,到目前为止,概率方案一直是崇拜的规模。在这里,我们使用自旋光子界面研究了确定性的灌注生成,通过反复的光学操纵,可以发出较长的纠缠光子。特定的,我们采用了带有单个孔自旋的固态INAS量子点。此外,我们将量子点嵌入光子晶体波导中,从而将发射极强烈耦合到单个光学模式并修改光 - 反物的相互作用。与量子点遇到的常见限制是相干自旋控制和光循环跃迁的不兼容。通过应用平面内磁性ELD并选择性地将线性光学偶极子与波导模式耦合,我们测量了光学环境的宽带增加到×14。7,同时还具有驱动光学拉曼过渡的能力。波导几何形状还允许选择性泵送光学转变,导致98%的旋转初始化熟食。我们演示了t ∗ 2 = 23。2 ns自旋去向时间,它超过了使用可比纳米结构的大多数实验。这些功能允许实现一个时态纠缠协议,我们对此进行了详细的分析。由于内置的自旋回波过程,该方案对T ∗ 2不敏感,并且与高磁性ELDS和波导兼容。1%Pr。1%Pr。通过结合谐振光脉冲和拉曼脉冲,该协议可以生成GHz状态和包含QD旋转和N光子的线性簇状态,其中每个光子都以两个时间模式的叠加发射。我们计算2个错误率。光子在考虑逼真的参数和波导的最佳使用时。该协议是通过实验实施的,我们实现了一个旋转铃声状态,其熟食度为66.6%和124 Hz检测率。通过使用自动稳定的双通用干涉仪,我们能够构建精确的GHz和Bell State Delity估计。延伸到三个量子位,我们观察到清晰的连贯性签名,但是,这缺乏能够证明能够纠缠的幅度。通过构建详尽的蒙特卡洛模拟,我们能够包括几乎所有相关的错误,并确定我们的88.5%的旋转旋转熟食作为主要误差机制。其他实验证明了更好的自旋对照,我们讨论了获得更高的善良并扩展到更多量子的几个可能的途径。
许多跨学科科学研究都需要对野火进行遥感,包括野火对生态的影响。几十年来,这项研究一直受到空间分辨率不足和探测器在短波和中波红外波长处饱和的阻碍,而高温 (>800 K) 表面的光谱辐射最为显著。为了解决这个问题,我们正在开发一种紧凑型高动态范围 (HDR) 多光谱成像仪。紧凑型火灾红外辐射光谱跟踪器 (c-FIRST) 利用数字焦平面阵列 (DFPA)。DFPA 由最先进的高工作温度屏障红外探测器 (HOT-BIRD) 和数字读出集成电路 (D-ROIC) 混合而成,具有像素内数字计数器以防止电流饱和,从而提供动态范围 (>100 dB)。因此,DFPA 将能够对温度变化范围从 300 K 到 >1600 K(燃烧的火灾)的目标进行非饱和高分辨率成像和定量检索。凭借从 500 公里的标称轨道高度解析地球表面 50 米级热特征的分辨率,一次观测即可捕获野火的全部温度和面积以及冷背景,从而增加每个返回字节的科学内容。使用非饱和 FPA 是一种新颖的做法,它克服了以前高辐射值使 FPA 像素饱和(从而降低了科学内容)的问题,并展示了遥感方面的突破性能力。因此,c-FIRST 适用于量化野火排放,这对于确定其对全球生态系统的影响至关重要。 c-FIRST 的 FPA 采用 InAs/InAsSb HOT-BIRD 外延材料制作,像素间距为 20 m,探测器阵列为 1280x480 格式,并与模拟 DROIC 混合。DFPA 的 50% 截止点为 ~4.5um,在 140K 工作温度下,整个 QE 光谱范围内测得的外部 QE~50%。我们将积分时间固定在 6 毫秒,以便在以 150 Hz 帧速率观察正常 300K 背景场景时在 MWIR 波段获得良好的灵敏度。对于标准模拟 ROIC,探测器像素在目标温度 ~700 K 时很容易饱和。当 D-ROIC 在 16 位模式下运行时,我们可以将饱和温度显著提高到 ~1100 K。当 D-ROIC 在超 HDR 32 位模式下(28 万亿电子阱深度)运行时,即使对于 1600 K 目标,探测器也不会接近饱和。火灾遥感的一个关键指标是可探测的最小目标尺寸。c-FIRST 可将可探测火灾的最小尺寸提高一个数量级,这主要是由于非饱和探测器的空间分辨率比 GOES 上的高级基线成像仪等当前维修仪器更高,同时功率、尺寸和重量也更低。c-FIRST 空中飞行计划于 2024 年火灾季节进行仪器测试和验证。我们预计 c-FIRST 太空验证将基于 2026 年或之后的空间技术验证机会。
由于其复杂性和在人类中发展各种疾病而摘要,必须将肥胖症识别为疾病。它的发育可能与肠道菌群的失衡有关,在肠道菌群中,微生物群疾病是由于细菌定植的不良调查而发生的,而有害细菌则主要与诊断各种疾病有关。这项研究的目的是回顾有关肠道菌群与肥胖之间关系的发现,以分析肥胖微生物组的可能变化。为准备工作的准备,例如:科学文章,法律文件和杂志,在数据库中主要是:Google Academic,Scielo,出版了。因此,它可能在富营养化和肥胖的人类中具有不同的组成,因为它有助于并有助于代谢,从而在将食物转化为养分和能量方面具有重要功能。肠道菌群一直关注多项研究,这些研究将肠道细菌参与能量代谢以及肥胖的发展。一些数据证明,肠道菌群在富营养化和肥胖个体中的布置不同,鉴于这一事实,人们认为它参与了超重和肥胖的过程。关键字:微生物群;肥胖;超重。抽象由于其复杂性和它是人类中几个疾病的事实,必须将肥胖症识别为伊斯兰(Aslens)。关键字:微生物群;肥胖;超重。它的发育可能与肠道菌群的失衡有关,肠道菌群的失衡是由于细菌定殖的失衡而发生的疾病,在菌群中发生疾病,而有害细菌与有益的细菌有关,与诊断各种疾病有关。这项研究的目的是回顾有关肠道菌群与肥胖之间关系的发现,以分析肥胖者微生物组的可能变化。要准备工作,例如:使用:科学文章,法律文件和杂志,主要在数据库中:Google Scholar,Scielo,PubMed。因此,它可能在富营养化和肥胖的人类中具有不同的组成,因为它有助于并有助于代谢,从而在将食物转化为营养和能量方面发挥了重要作用。肠道菌群一直是几项研究的重点,这些研究将肠道细菌参与能量代谢和肥胖的发展。一些数据证明,在富营养化和肥胖个体中,肠道菌群的排列不同。鉴于这一事实,人们认为它参与了超重和肥胖的过程。恢复debido a su complejidad y a que desarrolla diversas enfermedades en e el humano,la obesidad debe ser concorcida y tratada y tratada y tratada como una enfermedad。Su desarrollo puede estar relacionado con el desequilibrio de la microbiota intestinal, donde se produce un trastorno en la microbiota debido al desequilibrio de la colonización bacteriana, predominando las bacterias dañinas sobre las beneficiosas, relevantes en el diagnóstico de diversas enfermedades.这项研究的目的是回顾有关肠道菌群与肥胖之间关系的发现,以分析肥胖者微生物组的可能变化。 div>为了详细说明工作,诸如:科学文章,法律文件和杂志之类的档案中主要在数据库中:Google Scholar,Scielo,PubMed。 div>因此,它在富营养化和肥胖的人类中可能具有不同的组成,因为它一般有助于并有助于代谢,因此在养分食品和能量的转化中发挥了重要作用。 div>肠道微生物群是几项与参与的研究的主题