80 戊-1-铵 ( m = 4),81 己-1-铵 ( m = 5),81 庚-1-铵 ( m = 6),82 辛-1-铵 ( m = 7),82 壬-1-铵 ( m = 8);82 癸-1-铵 ( m = 9),82, 83 十一-1-铵 ( m = 10);83 RP2,2-(甲硫基)乙胺 (MTEA);84 RP3,烯丙基铵 (ALA);85 RP4,丁-3-炔-1-铵 (BYA);86 RP5,2-氟乙基铵;87 RP6,异丁基铵 (iso-BA);88 RP7,4-丁酸铵 (GABA);89 RP8,5-戊酸铵 (5-AVA); 90 RP9,杂原子取代的烷基铵;91 RP10,环丙基铵;92, 93 RP11,环丁基铵;92, 93 RP12,环戊基铵;92, 93 RP13,环己基铵;92, 93 RP14,环己基甲基铵;94 RP15,2-(1-环己烯基)乙基铵;95, 96 RP16,(羧基)环己基甲基铵 (TRA);97 RP17,苯基三甲基铵 (PTA);98 RP18,苄基铵 (BZA);99-104 RP19,苯乙铵 (PEA);50, 100, 101, 105-108 RP20,丙基苯基铵 (PPA); 100, 101 RP21,4-甲基苄基铵;109 RP22,4-氟苯乙铵 (F-PEA);106, 110-113 RP23,2-(4-氯苯基) 乙铵 (Cl-PEA);111 RP24,2-(4-溴苯基) 乙铵 (Br-PEA);111 RP25,全氟苯乙铵 (F5-PEA);114 RP26,4-甲氧基苯乙铵 (MeO-PEA);112 RP27,2-(4-芪基)乙铵 (SA);115 RP28,2-(4-(3-氟)芪基)乙铵 (FSA); 115 RP29,2-噻吩基甲基铵 (ThMA);116 RP30,2-(2-噻吩基)乙铵;116 RP31,2-(4'-甲基-5'-(7-(3-甲基噻吩-2-基)苯并[c][1,2,5]噻二唑-4-基)-[2,2'-联噻吩]-5-基)乙-1-铵 (BTM);117 RP32,1-(2-萘基)甲铵 (NMA);118 RP33,2-(2-萘基)乙铵 (NEA);118 RP34,萘-O-乙铵;119 RP35,芘-O-乙铵;119 RP36,苝-O-乙铵; 119 RP37,3-碘吡啶(IPy);97 RP38,咔唑烷基铵(CA-C4)。120 DJ 相:DJ1,丙烷-1,3-二胺(PDA,m = 3);121 丁烷-1,4-二胺(BDA,m = 4);122-126 戊烷-1,5-二胺(m = 5);125 己烷-1,6-二胺(HDA,m = 6);124,125 庚烷-1,7-二胺(m = 7);125 辛烷-1,8-二胺(ODA,m = 8);124,125 壬烷-1,9-二胺(m = 9)125 癸烷-1,10-二胺(m = 10); 126 十二烷-1,12-二铵(m=12);126, 127 DJ2,N 1 -甲基乙烷-1,2-二铵(N-MEDA);128 DJ3,N 1 -甲基丙烷-1,3-二铵(N-MPDA);128 DJ4,2-(二甲氨基)乙基铵(DMEN);129 DJ5,3-(二甲氨基)-1-丙基铵(DMAPA);129 DJ6,4-(二甲氨基)丁基铵(DMABA);129 DJ7,质子化硫脲阳离子;130 DJ8,2,2′-二硫代二乙铵;91, 131 DJ9,2,2′-(亚乙基二氧基)双(乙基铵) (EDBE);132 DJ10,2-(2-
简介 无机材料是电子设备的有吸引力的选择,这些电子设备可以配置为在分子水平上完全无害地溶解、吸收或降解,作为临时生物医学植入物或环境传感器。 1 图 1a 显示了 Colpitts 射频 (RF) 振荡器的一系列图像,作为单频 RF 信号的源,该信号包含各种代表性的生物可吸收电子元件,包括电感器、电容器、电阻器、二极管、晶体管、互连器、基板和封装层,所有这些元件在浸入水中时都会在受控的时间段内溶解。 1 在这些系统中使用无机材料的能力,包括出现在传统非瞬态电子产品中的某些类别,为高性能、复杂的操作模式以及使用至少部分与半导体行业成熟的代工厂一致的生产方案创造了许多机会。成功开发无机生物可吸收电子产品的关键在于了解基本原理
分层的钙钛矿是杂化2D材料,它是通过有机铵阳离子层分隔的无机铅卤化物网络的自组装形成的。在这些天然量子孔结构中,量子和介电结构导致强烈依赖于材料组成的激烈的激子状态。在本文中,我们回顾了对分层钙钛矿中激子光体物理学的当前理解,并强调了对其激子特性进行调整的许多方式。特别是,我们专注于激子动力学与晶格运动和软性杂种晶格的局部变形的耦合。这些效果导致了复杂的激发状态动力学,为光电材料设计设计了新的机会,并探索了量子固定系统中基本光物理学的探索。
中国科学院化学研究所,吉林长春 130022,中国 b 中国科学技术大学,安徽合肥 230026,中国 c 中国科学院大学,北京 100049,中国 d 广东省危险化学品应急检测重点实验室,
CHM 6620 — 固态无机化学 目标 1. 向学生介绍固态无机化学的高级概念; 2. 展示固态无机材料在当前和新兴应用中的使用方式。 先决条件:化学硕士或博士研究生或经讲师许可。 讲师 Stephen M. Kuebler 博士 电话:(407) 823-3720 办公室:化学楼 221 电子邮件:kuebler@mail.ucf.edu 文本 1. JE Huheey,《无机化学》,第 4 版。 2. Anthony R. West,《基础固态化学》,第 2 版。 3. 通过讲义和 WebCT 提供的精选阅读材料 讲座和讨论主题 ƒ 对称性、键合和结构(复习) ƒ 多态性、晶格能和缺陷 ƒ 离子固体 ƒ 氧化物和非氧化物晶体和玻璃 ƒ 制备方法(如区域精炼、化学气相沉积等) ƒ 微孔和层状固体、插层复合物、无机纤维 ƒ 链、环、笼和簇化合物 ƒ 纳米级固体(如量子点、纳米线、2D 量子阱) ƒ 线性和非线性光学材料 ƒ 无机聚合物(如有机硅、聚硅烷、聚磷腈) ƒ 催化中的无机固体 概述 在本课程中,我们将研究一系列无机固体的结构和化学性质及其一些技术应用。重点介绍它们的反应性和制备背后的化学原理。本课程对于对固态化学、催化、材料科学、环境化学感兴趣的学生很有帮助,或者总的来说,对于我们可以用元素周期表中的 100 多种元素做的所有令人兴奋的事情,这门课程都很有价值!