文本引导的图像编辑可以在支持创意应用程序方面具有变革性的影响。关键挑战是生成忠于输入文本提示的编辑,同时与输入图像一致。我们提出了Imagen Edor,这是一种构建的级联扩散模型,通过对文本引导的图像插入的微调[36]构建。Imagen ed- Itor的编辑忠实于文本提示,这是通过使用对象探测器在培训期间提出涂料面罩来提出的。此外,成像编辑器在输入图像中通过对原始高分辨率图像进行调节管道来详细信息。为了证明定性和定量评估,我们介绍了EditBench,这是用于文本指导图像插入的系统基准。EditBench评估在Natu-ral和生成的图像上探索对象,属性和场景的图像。Through extensive human evaluation on EditBench, we find that object-masking during training leads to across- the-board improvements in text-image alignment – such that Imagen Editor is preferred over DALL-E 2 [ 31 ] and Stable Diffusion [ 33 ] – and, as a cohort, these models are better at object-rendering than text-rendering, and handle mate- rial/color/size attributes better than count/shape attributes.
我们提出了一种新型的使用生成对抗网络的新型典范引导的面部介绍框架。我们的方法不仅保留了输入面部图像的质量,而且还可以使用类似示例性的面部属性来完成图像。我们通过同时利用输入图像的全局样式,从随机潜在代码生成的随机样式以及示例图像的示例样式来实现这一目标。我们引入了一种新颖的属性相似性指标,以鼓励网络以一种自我监督的方式从示例中学习面部属性的风格。为了确保跨油漆区域边界的自然过渡,我们引入了一种新型的空间变体梯度反向传播技术,以根据空间位置调整损耗梯度。我们通过实用应用程序对公共Celeba-HQ和FFHQ数据集进行了广泛的评估,这证明了面部涂漆的视觉质量卓越。源代码可在https://github.com/longlongaaago/exe-gan上找到。
摘要:图像介入是计算机视觉中的一项关键任务,涉及补充图像中缺失或损坏区域的艺术。这是一个过程,它主要是通过卷积神经网络(CNN)和生成对抗性网络(GAN)(GAN)的利用来依靠深度学习的能力。实现图像介绍的基本步骤包含数据收集和预处理,这需要组装一个图像数据集,这些图像与其完整的对应物一起组成了差距。神经网络体系结构起着关键作用,选择从gan到自动编码器,量身定制,该角色是针对手头的特定任务量身定制的。模型是通过最大程度地减少各种损失功能的训练,每个损失功能有助于特定的培训目标。介绍算法必须处理可变孔的大小并表现出上下文理解,以确保生成的内容与周围的上下文无缝融合。后处理技术可以使用定量指标和定性评估来完善生成的插图和评估。总体而言,基于深度学习的图像在图像恢复,对象删除及其他方面的实际应用继续前进。关键字:I图像介绍,计算机视觉,深度学习,卷积神经网络,生成对抗网络,数据集,自动编码器,图像恢复,对象删除。
使用扩散模型进行图像修复通常使用预条件模型(即针对绘画任务进行微调的图像条件模型)或后条件模型(即在推理时重新用于绘画任务的非条件模型)。预条件模型在推理时很快,但训练成本极高。后条件模型不需要任何训练,但在推理过程中很慢,需要多次前向和后向传递才能收敛到理想的解决方案。在这里,我们推导出一种不需要昂贵训练但推理速度很快的方法。为了解决昂贵的推理计算时间,我们在潜在空间而不是图像空间上执行前向-后向融合步骤。这是通过扩散过程中新提出的传播模块解决的。在多个领域进行的实验表明,我们的方法达到或改善了状态
抽象图像和视频介绍是计算机视觉和计算机图形学的经典问题,目的是填写图像和视频缺失区域中的合理和现实内容。随着深度学习的发展,这个问题最近取得了重大进展。本文的目的是综合地回顾基于图像和视频介绍的深度学习方法。具体来说,我们将方法分为不同的类别,从它们的高水平介入管道的视线中,提出了不同的深度学习体系结构,包括CNN,VAE,GAN,GAN,GAN,扩散模型等,并汇总了模块设计的技术。我们审查了培训的培训和常见的基准数据集。我们提出了低级像素和高级别的相似性,进行绩效评估的评估指标,并讨论代表介绍方法的优势和缺点。我们还讨论了相关的现实世界应用。最后,我们讨论了公开挑战,并提出了潜在的未来研究方向。
蛋白质结构预测场通过蛋白质折叠模型(例如α2和Esmfold)进行了深入的学习革命。这些模型可以快速进行计算机预测,并已整合到从头蛋白设计和蛋白质 - 蛋白质相互作用(PPI)预测中。然而,这些模型无法估计取决于构象分布的生物学相关特征。扩散模型是一种新型的生成模型,已经开发出来学习构象分布并应用于从头蛋白质设计。有限的工作是对蛋白质结构插入的有限工作,在该蛋白质结构上,通过同时调节其序列和其余结构来恢复蒙版的截面。在这项工作中,我们提出了构架的iff i n p ain t ing(frameDipt),这是一种蛋白质授予的广义模型。这对于T细胞很重要,鉴于互补性确定区域(CDR)环的超变量性。,我们评估了T细胞受体的CDR回路设计模型,并通过有限的训练数据和可学习的参数获得了与蛋白烯剂的可比预测准确性和RFDiffusion。与确定性结构预测模型不同,框架捕获了不同区域和结合状态的构象分布,突出了生成模型的关键优势。模型和推理代码已发布1。
由于古老的起源,在出土的甲骨文骨铭文(OBI)中有许多不可或缺的字符,这使伟大的challenges带来了认可和研究。近年来,图像介绍技术取得了显着的进步。但是,这些模型无法适应OBI的唯一字体形状和复杂的文本背景。为了应对这些上述挑战,我们提出了一种使用生成的对抗网络(GAN)恢复受损的OBI的两阶段方法,该方法结合了双重歧视者结构,以捕获全球和局部图像。为了准确恢复图像结构和细节,提出了空间注意机制和新型损失函数。通过将现有OBI和各种蒙版的清晰副本喂入网络中,它可以学会为缺失区域生成内容。实验结果揭示了我们提出的方法完成OBI的有效性。
现实世界文本可能会因环境或人为因素引起的腐蚀问题而损害,这阻碍了文本的完整样式(例如纹理和结构)的保存。这些腐蚀问题,例如涂鸦迹象和不完整的签名,在理解文本方面带来了困难,从而对下游应用构成了重大挑战,例如场景文本识别和签名识别。值得注意的是,当前的介绍技术通常无法充分解决此问题,并且难以恢复准确的文本图像以及合理且一致的样式。将其作为文本图像中绘画的一个开放问题,旨在建立一个基准来促进其研究。在这样做时,我们建立了两个特定的文本插图数据集,分别包含场景文本图像和手写文本图像。它们中的每个图像都由现实生活和合成数据集重新消除,其中包含成对的原始图像,损坏的图像和其他助手信息。在数据集的顶部,我们进一步开发了一种新型的神经框架,全局结构引导的扩散模型(GSDM),作为潜在的解决方案。利用文本的全局结构为先验,提出的GSDM开发了一个有效的扩散模型,以恢复干净的文本。通过彻底的经验研究证明了我们方法的效率,包括识别精度和图像质量的实质性提高。这些发现不仅高出了我们方法的有效性,而且强调了它增强文本图像所构图和处理的更广泛领域的潜力。代码和数据集可在以下网址提供:https://github.com/blackprotoss/gsdm。
摘要。在脑图像分析中,许多当前的管道对病变的存在不具有鲁棒性,从而降低了其准确性和鲁棒性。例如,处理病变时,经典医学图像处理操作(如非线性配准或分割)的性能会迅速下降。为了尽量减少它们的影响,一些作者提出修复这些病变,以便可以使用经典管道。然而,这需要手动划定感兴趣的区域,这很耗时。在本文中,我们提出了一个深度网络,它能够自动盲目地修复脑图像中的病变,从而使当前管道在病理条件下稳健地运行。我们使用 SPM12 管道和我们自动修复的图像证明了脑分割问题中改进的鲁棒性/准确性。关键词:病变修复、MRI、深度学习、稳健分割。
本文提出了一种新的带有分割混淆对抗训练(SCAT)和对比学习的图像修复对抗训练框架。SCAT 在修复生成器和分割网络之间进行对抗游戏,提供像素级局部训练信号并能适应具有自由形式孔洞的图像。通过将 SCAT 与标准全局对抗训练相结合,新的对抗训练框架同时展现出以下三个优点:(1)修复图像的全局一致性,(2)修复图像的局部精细纹理细节,以及(3)处理具有自由形式孔洞的图像的灵活性。此外,我们提出了纹理和语义对比学习损失,通过利用鉴别器的特征表示空间来稳定和改进我们的修复模型的训练,其中修复图像被拉近到真实图像但远离损坏图像。所提出的对比损失可以更好地引导修复后的图像从损坏的图像数据点移动到特征表示空间中的真实图像数据点,从而产生更逼真的完整图像。我们在两个基准数据集上进行了广泛的实验,从质量和数量上证明了我们模型的有效性和优越性。