本文提出了一种新型搜救遥控机器人(ROV)系统的设计,目标是实现水下目标搜索探测和小目标抓捕及救援的作业要求。首先给出了整个水下系统总体设计和推进系统布局设计。在此基础上对ROV框架结构、电子舱、动力舱进行了设计与分析。为完成抓取任务,基于多功能机械手设计了抓取手,实现水下抓取。为使ROV更加智能化,采用并分析了不同类型的水下物体检测与跟踪方法。最后,在水池和海上进行了试验,验证了所设计的搜救ROV的可靠性和稳定性。
新颖的,hi的准确和成本效益基因遗传学小组,用于R材评估和早期的NeuroDegenerateme disease,由ArtiïfiC的授权的神经变性基因iSeases赋予了功能。
1. Chassignol M、Khoroshavin A、Klimova A、Bilyatdinova A。教育中的人工智能趋势:叙述性概述。计算机科学学报。2018;136:16-24。2. Popenici SA、Kerr S。探索人工智能对高等教育教学的影响。技术与实践研究,增强学习。2017;12(1):1-3。3. Chounta IA。教育门户网站和 OER 存储库对机器学习和人工智能使用现状的回顾(白皮书)。2018:4-6。4. Murphy RF。人工智能应用支持 K-12 教师和教学。兰德公司。2019。5. Nwana HS。智能辅导系统:概述。Artif Intell Rev。1990;4(4):251-277。 6. Malik G, Tayal DK, Vij S. 人工智能在教育教学中的作用分析. Rec Find Intell Comp Tech. 2017;1(2019):407-417。7. Brent E. 利用专家系统设计社会科学研究. Anthropol Quart. 1989;62(3):121-130。
[80] S. Rezaeiravesh,R。Vinuesa和P. Schlatter。一个不确定性定量框架,用于评估计算流体动力学中的准确性,灵敏度和鲁棒性。J. Comput。SCI。 ,62,101688,2022。 [81] M. Morimoto,K。Fukami,R。Maulik,R。Vinuesa和K. Fukagata。 基于神经网络的流体流量估计中的模型形式的不存在定量。 Nagare J. JPN。 Soc。 流体机械。 ,41,2022。 [82] R. T. Javed,O。Nasir,M。Borit,L。Vanh´ee,E。Zea,S。Gupta,R。Vinuesa和J. Qadir。 下车! AI伦理教育中的孤岛:全球AI课程的无监督主题建模分析。 J. Artif。 Intell。 res。 ,73,933–965,2022。 [83] Moon,R。Murphy,Y。Nakauchi,E。Prestes,B。RaoR.,R。Vinuesa和C.-M。 m orch。 机器人技术在实现联合国可持续发展目标中的作用 - 专家在2021 IEEE/RSJ IROS研讨会上的会议。 IEEE机器人。 Autom。 mag。 ,29,92–107,2022。 [84] R. Vinuesa,O。Lehmkuhl,A。Lozano-Dur´an和J. Rabault。 翅膀中的流量控制和通过深度加强学习发现新方法。 流体,7,62,2022。 [85] R. Vinuesa和S. Le Clainche。 用于复杂流的机器学习方法。 Energies,15,1513,2022。 [86] N. Tabatabaei,R。Vinuesa,R。Orléu和P. Schlatter。SCI。,62,101688,2022。[81] M. Morimoto,K。Fukami,R。Maulik,R。Vinuesa和K. Fukagata。基于神经网络的流体流量估计中的模型形式的不存在定量。Nagare J. JPN。Soc。流体机械。,41,2022。[82] R. T. Javed,O。Nasir,M。Borit,L。Vanh´ee,E。Zea,S。Gupta,R。Vinuesa和J. Qadir。下车!AI伦理教育中的孤岛:全球AI课程的无监督主题建模分析。J. Artif。 Intell。 res。 ,73,933–965,2022。 [83] Moon,R。Murphy,Y。Nakauchi,E。Prestes,B。RaoR.,R。Vinuesa和C.-M。 m orch。 机器人技术在实现联合国可持续发展目标中的作用 - 专家在2021 IEEE/RSJ IROS研讨会上的会议。 IEEE机器人。 Autom。 mag。 ,29,92–107,2022。 [84] R. Vinuesa,O。Lehmkuhl,A。Lozano-Dur´an和J. Rabault。 翅膀中的流量控制和通过深度加强学习发现新方法。 流体,7,62,2022。 [85] R. Vinuesa和S. Le Clainche。 用于复杂流的机器学习方法。 Energies,15,1513,2022。 [86] N. Tabatabaei,R。Vinuesa,R。Orléu和P. Schlatter。J. Artif。Intell。 res。 ,73,933–965,2022。 [83] Moon,R。Murphy,Y。Nakauchi,E。Prestes,B。RaoR.,R。Vinuesa和C.-M。 m orch。 机器人技术在实现联合国可持续发展目标中的作用 - 专家在2021 IEEE/RSJ IROS研讨会上的会议。 IEEE机器人。 Autom。 mag。 ,29,92–107,2022。 [84] R. Vinuesa,O。Lehmkuhl,A。Lozano-Dur´an和J. Rabault。 翅膀中的流量控制和通过深度加强学习发现新方法。 流体,7,62,2022。 [85] R. Vinuesa和S. Le Clainche。 用于复杂流的机器学习方法。 Energies,15,1513,2022。 [86] N. Tabatabaei,R。Vinuesa,R。Orléu和P. Schlatter。Intell。res。,73,933–965,2022。[83]Moon,R。Murphy,Y。Nakauchi,E。Prestes,B。RaoR.,R。Vinuesa和C.-M。 m orch。 机器人技术在实现联合国可持续发展目标中的作用 - 专家在2021 IEEE/RSJ IROS研讨会上的会议。 IEEE机器人。 Autom。 mag。 ,29,92–107,2022。 [84] R. Vinuesa,O。Lehmkuhl,A。Lozano-Dur´an和J. Rabault。 翅膀中的流量控制和通过深度加强学习发现新方法。 流体,7,62,2022。 [85] R. Vinuesa和S. Le Clainche。 用于复杂流的机器学习方法。 Energies,15,1513,2022。 [86] N. Tabatabaei,R。Vinuesa,R。Orléu和P. Schlatter。Moon,R。Murphy,Y。Nakauchi,E。Prestes,B。RaoR.,R。Vinuesa和C.-M。 m orch。机器人技术在实现联合国可持续发展目标中的作用 - 专家在2021 IEEE/RSJ IROS研讨会上的会议。IEEE机器人。Autom。 mag。 ,29,92–107,2022。 [84] R. Vinuesa,O。Lehmkuhl,A。Lozano-Dur´an和J. Rabault。 翅膀中的流量控制和通过深度加强学习发现新方法。 流体,7,62,2022。 [85] R. Vinuesa和S. Le Clainche。 用于复杂流的机器学习方法。 Energies,15,1513,2022。 [86] N. Tabatabaei,R。Vinuesa,R。Orléu和P. Schlatter。Autom。mag。,29,92–107,2022。[84] R. Vinuesa,O。Lehmkuhl,A。Lozano-Dur´an和J. Rabault。翅膀中的流量控制和通过深度加强学习发现新方法。流体,7,62,2022。[85] R. Vinuesa和S. Le Clainche。用于复杂流的机器学习方法。Energies,15,1513,2022。[86] N. Tabatabaei,R。Vinuesa,R。Orléu和P. Schlatter。在rans模拟中,边界层的湍流跳闸技术。流湍流。燃烧。,108,661–682,2022。[87] N. Tabatabaei,M。Hajipour,F。Mallor,R。Orloul - Orl u,R。Vinuesa和P. Schlatter。使用风洞测量值对NACA4412唤醒建模。流体,7,153,2022。[88] G. R. McPherson,B。Sirmacek和R. Vinuesa。质量灭绝事件的环境阈值。结果工程。,13,100342,2022。[89] D. Mamchur,J。Peksa,S。LeClainche和R. Vinuesa。用于非侵入对象检查的射线照相和新技术的应用和进步。传感器,22,2121,2022。[90] R. Raman,P。Singh,V。K. Singh,R。Vinuesa和P. Nedungadi。了解IEEE访问中出版物的文献计量模式。IEEE访问,10,35561–35577,2022。[91] M. Atzori,W。Kéopp,S。W. D. Chien,D。Massaro,F。Mallor,A。Peplinski,M。Rezaei,N。Jansson,S。Markidis,R。Vinuesa,E。Laure,P。Schlatter,P。Schlatter和T. Weinkauf。用paraview催化剂在NEK5000中大规模湍流模拟的原位可视化。J.超级计算。,78,3605–3620,2022。[92] D. Mamchur,J。Peksa,S。LeClainche和R. Vinuesa。对非侵害对象筛查技术的艺术状态分析。prz。elektrotech。,98,168–173,2022。[93] S. Singh Gill,R。Vinuesa,V。Balasubramanian和S. K. Ghosh。创新的软件系统,用于管理COVID-19大流行的影响。nat。软件。:实践。实验。,52,821–823,2022。[94] R. Vinuesa和B. Sirmacek。可解释的深度学习模型,以帮助实现可持续发展目标。马赫。Intell。 ,3,926,2021。 [95] L. Guastoni,A。Guemes,A。Ianiro,S。Decetti,P。Schlatter,H。Azizpour和R. Vinuesa。 卷积网络模型,以预测壁数量的壁湍流。 J.流体机械。 ,928,A27,2021。 [96] A. Guemes,S。Decetti,A。Ianiro,B。Sirmacek,H。Azizpour和R. Vinuesa。 从粗壁测量到湍流速度场,通过深度学习。 物理。 流体,33,075121,2021。Intell。,3,926,2021。[95] L. Guastoni,A。Guemes,A。Ianiro,S。Decetti,P。Schlatter,H。Azizpour和R. Vinuesa。卷积网络模型,以预测壁数量的壁湍流。J.流体机械。,928,A27,2021。[96] A. Guemes,S。Decetti,A。Ianiro,B。Sirmacek,H。Azizpour和R. Vinuesa。从粗壁测量到湍流速度场,通过深度学习。物理。流体,33,075121,2021。
1,2,3,4,6学生(CSE)KIIT被认为是大学,印度布巴内斯瓦尔,5名学生(机械)KIIT被认为是大学,印度布巴内斯瓦尔,印度摘要:本文档详细介绍了新颖的智能城市交通管理系统的设计和实施,并实现了一个新颖的智能城市交通管理系统,共同构成了互联网的能力(Intelly of Things of Things and Things and Intelly of Things and Intelly of Things and Intelly of Things and Intell of Intelly(Iot of Things and Intell)和计算机。应对现代城市交通的多方面挑战,包括拥堵,安全问题和监管依从性,该系统采用了混合边缘云建筑。智能物联网设备的分布式网络,包括配备了设备AI处理,LIDAR,雷达和环境传感器的智能相机,可捕获实时流量数据。边缘计算节点在交叉点上进行了战略性部署,进行局部数据分析,从而可以立即做出响应,例如自适应交通信号调整和优先级的紧急车辆移动。同时,云平台汇总了来自所有边缘节点的数据,促进了全面的交通模式分析,预测性建模和全系统范围的优化策略。先进的计算机视觉算法,包括基于Yolov8的对象检测,车道跟踪和行人活动识别,可为交通动态和潜在违规行为提供关键的见解。在实时和历史流量数据上训练的机器学习模型,使系统能够动态调整信号时机和预测拥堵热点。与现有的流量基础架构和用于实时流量信息传播的用户友好的移动应用程序集成也是关键功能。本文档探讨了系统的体系结构,硬件和软件组件的相互作用,通信协议,开发生命周期以及缓解关键挑战(例如可扩展性,安全性和延迟)。简介:城市环境的复杂性日益增加,再加上车辆数量的不断增长,加剧了交通管理的挑战。传统系统通常证明不足以解决当代交通流量的动态和多方面的性质。本文档介绍了一个具有前瞻性的智能城市交通管理系统,该系统利用物联网,计算机视觉和云计算的综合优势来创建一个更聪明,响应和可持续的交通生态系统。核心目标是优化交通流量,改善所有道路使用者的道路安全性,最大程度地减少环境影响,并通过实时交通智能增强交通当局和公众的能力。通过战略性地部署边缘计算资源,该系统实现了关键决策的实时响应能力,而云平台为长期流量优化和战略计划提供了必要的可扩展性和分析能力。以下各节详细介绍了系统的架构,组成部分和实现路线图,强调
[1] Shuo Xu,Liyuan Hao,Guancan Yang,Kun Lu和Xin An。基于主题模型的框架,用于检测和预测新兴技术。技术预测和社会变革,第1卷。162,p。 120366,2021。[2] Xing Yi和James Allan。信息检索的Uti-Lizing主题模型的比较研究。在Mohand Boughanem,Catherine Berrut,Josiane Mothe和Chantal Soule-Dupuy,编辑中,信息检索的进步,pp。29–41,柏林,海德堡,2009年。Springer Berlin Heidel-Berg。[3] Shixia Liu,Michelle X. Zhou,Shimei Pan,Yangqiu Song,Weihong Qian,Weijia Cai和Xiaoxiao Lian。tiara:主动,基于主题的视觉文本摘要和分析。acm trans。Intell。 Syst。 技术。 ,卷。 3,编号 2,2012年2月。 [4] David Blei,Andrew Ng和Michael Jordan。 潜在的dirich-让分配。 在T. Dietterich,S。Becker和Z. Ghahra mani中,编辑,《神经信息处理系统的进步》,第1卷。 14。 MIT出版社,2001。 [5] Yishu Miao,Edward Grefenstette和Phil Blunsom。 涵盖神经变异性推断的离散潜在主题,2017年。 [6] Akash Srivastava和Charles Sutton。 主题模型的自动编码变量推断,2017年。 [7] Maarten Grootendorst。 bertopic:基于类的TF-IDF程序的神经主题建模,2022。 [8] David M. Blei和John D. La效应。 动态主题模式。Intell。Syst。技术。,卷。3,编号2,2012年2月。[4] David Blei,Andrew Ng和Michael Jordan。潜在的dirich-让分配。在T. Dietterich,S。Becker和Z. Ghahra mani中,编辑,《神经信息处理系统的进步》,第1卷。14。MIT出版社,2001。[5] Yishu Miao,Edward Grefenstette和Phil Blunsom。涵盖神经变异性推断的离散潜在主题,2017年。[6] Akash Srivastava和Charles Sutton。主题模型的自动编码变量推断,2017年。[7] Maarten Grootendorst。bertopic:基于类的TF-IDF程序的神经主题建模,2022。[8] David M. Blei和John D. La效应。动态主题模式。在第23届机器学习国际会议论文集中,ICML '06,p。 113–120,纽约,纽约,美国,2006年。计算机协会。[9] c´edric f´evotte和j´erˆome idier。算法,用于beta-Divergence,2011年。 [10] Silvia Terragni,Elisabetta Fersini,Bruno Giovanni Galuzzi,Pietro Tropeano和Antonio Candelieri。 八八张:对主题模型进行组合和优化很简单! 在Dimitra Gkatzia和Djam´e Seddah中,编辑,第16届会议论文集算法,用于beta-Divergence,2011年。[10] Silvia Terragni,Elisabetta Fersini,Bruno Giovanni Galuzzi,Pietro Tropeano和Antonio Candelieri。八八张:对主题模型进行组合和优化很简单!在Dimitra Gkatzia和Djam´e Seddah中,编辑,第16届会议论文集
1。Rowe T W,Katzourou I K,Stevenson-Hoare J O,Bracher-Smith M R,Ivanov D K,Escott-Price V. Alzheimer氏病的终身风险预测机器学习:系统评价。大脑社区2021; doi:10.1093/ braincomms/ fcab246。2。Malcangi M.基于AI的方法和技术,用于开发可穿戴设备,用于假肢和退化性疾病的预测。方法mol biol 2021; 2190:337–354。3。Chander N G,Reddy D V.牙齿牙齿牙齿追踪器,适用于阿尔茨海默氏症患者。J印度假肢2023年; 23:96–98。4。Amini M,Pedram M M,Moradi A,Jamshidi M,Ouchani M. Gc-Cnnnet:使用遗传和卷积神经网络诊断出使用PET图像诊断阿尔茨海默氏病。计算Intell Neurosci 2022; doi:10.1155/2022/7413081。5。Rabaey J M.脑机界面作为极端微型化的新边界。pp 19-24。在欧洲固态设备研究会议论文集(Essderc 2011)。2011。6。Vidal J J.朝着直接的脑部计算机通信。Annu Rev Biophys Bioeng 1973; 2:157–180。
收到:06-02-2022修订:07-19-2022接受:07-30-2022引用:L,Chen和S. Su,“基于区块链加上供应链网络上的信托传播的优化”,J。IntellManag。decis。,卷。1,否。1,pp。17-27,2022。https://doi.org/10.56578/jimd010103。©2022作者。香港许可证学院出版服务有限公司。可以免费下载本文,并用4.0许可证的CC使用引用原始发布版本的引用和引用。摘要:区块链技术的权力下放大大改善了供应链网络中的信任关系。鉴于供应链网络中缺乏信任,不确定性和不对称性,本文集成了区块链技术,以构建信任表示,计算和传播的网络动态模型,并探讨区块链如何影响供应链网络。 结果表明,在区块链信任框架被部署在农业供应链中后,网络量表增加了115.89%,网络连接增加了60.31%,最短路径的平均路径减少了4.95%。 同时,网络拓扑性能(例如学位分布和平均聚类系数)在不同程度上进行了优化。 以农业供应链为例,拓扑变化的实际意义得到了解释。 总体而言,区块链信任机制通过影响节点之间的信任关系来改善供应链网络的拓扑。 简介鉴于供应链网络中缺乏信任,不确定性和不对称性,本文集成了区块链技术,以构建信任表示,计算和传播的网络动态模型,并探讨区块链如何影响供应链网络。结果表明,在区块链信任框架被部署在农业供应链中后,网络量表增加了115.89%,网络连接增加了60.31%,最短路径的平均路径减少了4.95%。同时,网络拓扑性能(例如学位分布和平均聚类系数)在不同程度上进行了优化。以农业供应链为例,拓扑变化的实际意义得到了解释。总体而言,区块链信任机制通过影响节点之间的信任关系来改善供应链网络的拓扑。简介关键字:信任;区块链;供应链网络;复杂网络1。