应力强度因子 (SIF) 范围与疲劳裂纹扩展之间的相关性是应用于轻型结构的故障安全设计方法的有力工具。关键作用是精确计算疲劳载荷循环的 SIF。先进的材料加工可以塑造残余应力,使 SIF 计算成为一项具有挑战性的任务。虽然 SIF 叠加成功地解决了拉伸残余应力的考虑问题,但压缩残余应力的处理仍需澄清。这项工作展示了 SIF 叠加原理在包含高压缩残余应力的区域中的应用,这些区域会导致裂纹闭合效应。裂纹闭合取决于残余应力和施加应力的组合载荷,在本研究中被解释为裂纹几何形状的变化。因此,源(即施加或残余应力)与其结果(即相应的 SIF)之间的关系取决于源(即组合载荷)的相互作用。由于这种相互作用,残余应力引起的疲劳行为变化不能仅与残余或施加的 SIF 相关联。这项工作提出了应用 SIF 和残余 SIF 的两种替代定义,从而允许残余 SIF 或应用 SIF 与疲劳行为变化之间建立明确的相关性。
景观在倾斜土地上的稳定性构成了山区生态保护和可持续发展的基础。然而,随着人类活动的加剧,尤其是在中国西南部复杂的山区,倾斜土地上的景观模式受到了严重破坏。这项研究研究了Guiyang倾斜土地上景观干扰强度的时空变化及其对生态系统服务的影响。调查结果表明,在过去的20年中,总体景观干扰强度通常有所下降,尤其是在2000年至2010年之间。然而,某些梯度区域(例如斜率在20-25度之间)的干扰强度有所增加。同时,生态系统服务总体上有所下降,尤其是在水产量和作物生产方面,而碳库存却略有增加。这项研究揭示了景观干扰强度与生态系统服务之间存在显着的空间相关性,并且在不同服务之间的关系不同。它强调了人类活动对景观稳定和生态系统服务的深远影响,尤其是在斜坡陡峭的地区。这项研究的贡献在于为山区的可持续景观管理和生态系统服务保护提供科学基础,强调了减轻人类干扰和加强生态恢复的重要性。
归因4.0国际(CC BY 4.0)此工作可根据创意共享归因4.0国际许可提供。通过使用这项工作,您可以接受该许可条款的约束(https://creativecommons.org/licenses/4.0/)。归因 - 您必须引用工作。翻译 - 您必须引用原始作品,确定对原始文本的更改,并添加以下文本:如果原始作品和翻译之间有任何差异,则仅应将原始作品的文本视为有效。改编 - 您必须引用原始作品并添加以下文本:这是经合组织对原始作品的改编。本适应中表达的意见和论点不应报告为代表经合组织或其成员国的官方观点。第三方材料 - 许可证不适用于工作中的第三方材料。如果使用这种材料,则负责获得第三方的许可以及任何侵权索赔。未经明确许可,您不得使用经合组织徽标,视觉标识或封面图像,也不得建议经合组织认可您对工作的使用。根据本许可引起的任何争议均应按仲裁根据2012年常任仲裁法院(PCA)仲裁规则解决。仲裁的所在地应为巴黎(法国)。仲裁员的数量应为一个。
据报道,来自DayCent模型的SOC数据是SOC的年度总变化,每种MLRA中每种CSA场景的10个代表性5年作物轮换到30 cm的土壤深度。选择30厘米的土壤深度与美国GHG库存一致(EPA,2024),并且是在Daycent建模的标准土壤深度,如Daycent Companion文档中所述。选择了10个五年轮换,因为它们代表了当前的美国种植实践和典型的旋转长度。在脚注3中更详细地描述了建模的10个旋转。在30年的投影期内,将情景复制(即,连续六个术语对5年的农作物旋转进行了建模)。每年30年,既捕获土壤碳的变化在更长的时间内发生(长达30年),并线性化的SOC变化。
钢铁行业脱碳和推动减排的能力需要一系列新技术,这些技术必须得到政府的立即支持,并承诺建设转型所必需的基础设施。此外,应该认识到,每个组织脱碳和追求碳减排技术的方法都是独一无二的,取决于几个限制因素。需要考虑的限制因素包括但不限于资产配置、技术限制、能源/燃料可用性、市场变化、地理位置等。这将需要安装尚未进行商业验证、处于研究阶段或需要大量资本投资来取代工厂中运行的现有技术的创新控制和技术。技术渗透的巨大差距将需要政府的支持以提供清洁电力并投资能源基础设施,以具有全球竞争力的成本提供这种电力,利益相关者和市场推动对低碳钢的需求以弥补这一差距。
本表描述了高治疗强度水平(TIL)的患者的基线特征。高til被定义为任何高强度治疗(不包括第1天的减压颅骨切除术,巴比妥酸盐,强化低温,强化过度换气)。通过使用卡方或Fisher的精确检验(非正常分布)来确定分类变量的明显组差异,以及连续变量的ANOVAS或KRUSKAL WALLIS检验(非正常分布)。
携带轨道角动量(OAM)的电子涡流束(EVB)在一系列基本的科学研究中起着关键作用,例如手性能量损坏光谱和磁性二色症光谱。到目前为止,几乎所有实验创建的EVB都表现出各向同性甜甜度强度模式。在这里,基于电子束的位置差异角与沿方位角方向的相位梯度之间的相关性,我们表明可以将自由电子量身定制为具有独立于携带OAM的可自定义强度模式的EVB。作为概念验证,通过使用计算机生成的全息图和设计相掩膜来塑造传输电源显微镜中无入射电子的塑造,将三个结构化的EVB量身定制,以表现出完全不同的强度表现。此外,通过模态分解,我们定量研究了它们的OAM光谱分布,并揭示了结构化的EVB呈现了由本地各种地理学诱导的一系列不同特征态的叠加。这些结果不仅概括了EVB的概念,而且还表现出除OAM外,电子束操纵的高度可控程度。
免责声明本文件是作为由美国政府机构赞助的工作的帐户准备的。美国政府和劳伦斯·利弗莫尔国家安全,有限责任公司,或其任何雇员均不对任何信息,设备,产品或流程的准确性,完整性或有用性承担任何法律责任或责任,或承担任何法律责任或责任,或者代表其使用不会侵犯私有权利。以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或Lawrence Livermore National Security,LLC的认可。本文所表达的作者的观点和意见不一定陈述或反映美国政府或劳伦斯·利弗莫尔国家安全,有限责任公司的观点和观点,不得用于广告或产品代表目的。
Benjamen P. Reed* 1 , David J. H. Cant 1 , Steve J. Spencer 1 , Abraham Jorge Carmona-Carmona 2 , Adam Bushell 3 , Alberto Herrera-Gómez 2 , Akira Kurokawa 4 , Andreas Thissen 5 , Andrew G. Thomas 6 , Andrew J. Britton 7 , Andrzej Bernasik 8 , Anne Fuchs 9 , Arthur P. Baddorf 10 , Bernd Bock 11 , Bill Theilacker 12 , Bin Cheng 13 , David G. Castner 14 , David J. Morgan 15 , David Valley 16 , Elizabeth A. Willneff 17 , Emily F. Smith 18 , Emmanuel Nolot 19 , Fangyan Xie 20 , Gilad Zorn 21 , Graham C. Smith 22 , Hideyuki Yasufuku 23 , Jeffery Fenton 24 , Jian Chen 20 , Jonathan D. P. Counsell 25 , Jörg Radnik 26 , Karen J. Gaskell 27 , Kateryna Artyushkova 16 , Li Yang 28 , Lulu Zhang 4 , Makiho Eguchi 29 , Marc Walker 30 , Mariusz Hajdyła 8 , Mateusz M. Marzec 8 , Matthew R. Linford 31 , Naoyoshi Kubota 29 , Orlando Cortazar- Martínez2,Paul Dietrich 5,Riki Satoh 29,Sven L. M. Schroeder 7,Tahereh G. Avval 31,Takaharu Nagatomi 32,Vincent Fernandez 33,Wayne Lake 34,Wayne Lake 34,Yasushi Azuma 4,Yasushi Azuma 4,Yusuke Yusuke Yoshikawa 355,36,and Alexander G./alexander G.
Benjamen P. Reed* 1 , David J. H. Cant 1 , Steve J. Spencer 1 , Abraham Jorge Carmona-Carmona 2 , Adam Bushell 3 , Alberto Herrera-Gómez 2 , Akira Kurokawa 4 , Andreas Thissen 5 , Andrew G. Thomas 6 , Andrew J. Britton 7 , Andrzej Bernasik 8 , Anne Fuchs 9 , Arthur P. Baddorf 10 , Bernd Bock 11 , Bill Theilacker 12 , Bin Cheng 13 , David G. Castner 14 , David J. Morgan 15 , David Valley 16 , Elizabeth A. Willneff 17 , Emily F. Smith 18 , Emmanuel Nolot 19 , Fangyan Xie 20 , Gilad Zorn 21 , Graham C. Smith 22 , Hideyuki Yasufuku 23 , Jeffery Fenton 24 , Jian Chen 20 , Jonathan D. P. Counsell 25 , Jörg Radnik 26 , Karen J. Gaskell 27 , Kateryna Artyushkova 16 , Li Yang 28 , Lulu Zhang 4 , Makiho Eguchi 29 , Marc Walker 30 , Mariusz Hajdyła 8 , Mateusz M. Marzec 8 , Matthew R. Linford 31 , Naoyoshi Kubota 29 , Orlando Cortazar- Martínez2,Paul Dietrich 5,Riki Satoh 29,Sven L. M. Schroeder 7,Tahereh G. Avval 31,Takaharu Nagatomi 32,Vincent Fernandez 33,Wayne Lake 34,Wayne Lake 34,Yasushi Azuma 4,Yasushi Azuma 4,Yusuke Yusuke Yoshikawa 355,36,and Alexander G./alexander G.