本文档并非设计规范或说明手册。所呈现的信息预计会根据行业事件和不断发展的标准定期更改。此处所述的技术要求与 BPA 当前对系统添加和修改的内部实践一致。这些要求通常与北美电力可靠性公司 (NERC)、西部电气协调委员会 (WECC)、西北电力联盟 (NWPP)、电气和电子工程师协会 (IEEE) 和美国国家标准协会 (ANSI) 的原则和实践一致。上述组织的标准也可能会发生变化。此类标准的最新版本应适用于每个互连请求。
摘要 — 电子系统中焊点寿命估算方法成本高昂且耗时,加上数据有限且不一致,对将可靠性考虑作为电子设备主要设计标准之一提出了挑战。在本文中,设计了一个迭代机器学习框架,使用一组自修复数据来预测焊点的使用寿命,这些数据通过热负荷规格、材料特性和焊点几何形状强化了机器学习预测模型。自修复数据集通过相关驱动神经网络 (CDNN) 迭代注入,以满足数据多样性。结果表明,在很短的时间内,焊点的寿命预测精度得到了非常显著的提高。分别评估了焊料合金和焊料层几何形状对焊点蠕变疲劳损伤演变的影响。结果表明,Sn-Ag-Cu 基焊料合金通常具有更好的性能。此外,蠕变和疲劳损伤演化在 Sn-Pb 和 Sn-Ag-Cu 基焊料合金中分别占主导地位。所提出的框架提供了一种工具,允许在制造的早期阶段对电子设备进行可靠性驱动的设计。
混合资源(定义为发电、储能和/或灵活负载的组合,它们共享一个公共互连点并作为单一集成资源运行)的主要优势之一是它们能够减少将新发电资源互连到电网所需的输电网络升级。在大多数拥有高质量可再生资源的地区,已经使用了低成本且简单的互连点。因此,当互连研究表明可再生能源项目将使现有设备超载或可能导致输电系统不稳定时,可再生能源项目必须支付昂贵的大容量电力系统网络升级费用。这笔费用通常由项目开发商支付,而不是系统运营商或负载服务实体(通常是公用事业公司)。加剧这一问题的是可再生能源项目在互连队列中等待的僵局,研究通常需要数年才能完成,项目也经历了许多延迟。例如,PJM 系统最近宣布暂停所有新的互连请求,以改进互连流程。可再生能源发电机在传输互连方面面临的这些挑战是其进一步发展的重大障碍。
本指南的所有章节均由美国环保署大气计划办公室气候保护伙伴关系司的州和地方气候与能源计划制定。Phil Assmus 负责本指南的整体更新,并为所有章节提供内容和编辑支持。David Tancabel 担任六个公用事业政策章节的负责人,Cassandra Kubes 领导了一项跨领域工作,以解决本指南所有章节中的公平问题。Maggie Molina 为所有章节提供技术审查和编辑支持,并领导了能源效率章节的制定。我们感谢其他美国环保署工作人员,即 Erica Bollerud、Joe Bryson、Beth Conlin、James Critchfield、Risa Edelman、Maureen McNamara 和 Neeharika Naik-Dhungel,他们为一个或多个章节的初步制定、早期草案审查或最终内容提供了指导。
电话:914-945-3070(SETNA 为 603-548-7870)电子邮件:kwlee@us.ibm.com(SETNA 为 eschulte@set-na.com)摘要锡合金被广泛用作电子互连的焊料。锡焊料表面往往有锡氧化物,需要将其去除以提高互连回流工艺(如倒装芯片连接)的产量。传统上,使用强助焊剂去除这些氧化物,但此工艺的缺点是会留下助焊剂残留物,这可能导致底部填充分层或需要高成本的清洁工艺。随着焊料凸块体积和凸块间间距的减小,这些问题在制造过程中变得更加难以处理。我们建议使用大气等离子体来减少凸块表面的这些氧化物,以便使用非常轻的助焊剂,甚至根本不使用助焊剂。此工艺具有等离子表面处理的优点,而没有真空等离子工艺的成本和产量损失。这种工艺可以提高产量和产量,同时降低成本。我们描述了一个实验,其中锡箔用还原化学大气等离子体工艺处理,然后用X射线光电子能谱 (XPS) 和俄歇电子能谱 (AES) 进行分析。AES 深度剖面分析表明,等离子体显著降低了氧化锡的厚度。没有证据表明任何蚀刻底层元素锡。这些结果表明,氧化锡被还原为金属锡,而底层锡金属没有被蚀刻。在另一个使用带有 SnAg 焊料的半导体芯片的类似实验中,XPS 结果表明氧化锡再次被还原为金属锡。在倒装芯片连接中,使用这种大气等离子体处理的芯片的连接工艺实现了高互连产量,即使在质量差且氧化过度的焊球的情况下也是如此。据我们了解,以前没有报道过在环境中用大气等离子体对氧化锡进行纯化学还原。关键词无铅焊料倒装芯片连接、氧化锡还原、大气等离子体和半导体互连
Pfeifenberger,《纽约州和区域海上风电输电规划》,NYSERDA 海上风电网络研讨会,2022 年 3 月 30 日。Pfeifenberger,《跨区域输电的好处:21 世纪电网规划》,美国能源部国家输电规划研究网络研讨会,2022 年 3 月 15 日。Pfeifenberger,《21 世纪输电规划:效益量化和成本分配》,为联邦-州电力输电联合工作组 NARUC 成员准备,2022 年 1 月 19 日。Pfeifenberger、Spokas、Hagerty、Tsoukalis,《改进区域间输电规划的路线图》,2021 年 11 月 30 日。Pfeifenberger、Tsoukalis、Newell,“保留为纽约创建网状海上电网选项的效益和成本”,与西门子和 Hatch 一起为 NYSERDA 准备,2021 年 11 月9,2022 年。Pfeifenberger,《输电——伟大的推动者:认识到输电规划的多重好处》,ESIG,2021 年 10 月 28 日。Pfeifenberger 等人,《21 世纪的输电规划:提高价值和降低成本的行之有效的实践》,Brattle-Grid Strategies,2021 年 10 月。Pfeifenberger,《海上风电的输电选项》,NYSERDA 网络研讨会,2021 年 5 月 12 日。Pfeifenberger,《输电规划和成本效益分析》,向 FERC 员工的演示,2021 年 4 月 29 日。Pfeifenberger 等人,《纽约电网研究初步报告》,为 NYPSC 准备,2021 年 1 月 19 日。Pfeifenberger、Ruiz、Van Horn,“通过输电系统实现不确定可再生能源发电多样化的价值”,BU-ISE,2021 年 10 月14,2020。Pfeifenberger、Newell、Graf 和 Spokas,“海上风电输电:纽约选项分析”,为 Anbaric 准备,2020 年 8 月。Pfeifenberger、Newell 和 Graf,“新英格兰的海上输电:更完善的电网规划带来的好处”,为 Anbaric 准备,2020 年 5 月。Tsuchida 和 Ruiz,“利用先进技术进行输电运行创新”,T&D World,2019 年 12 月 19 日。Pfeifenberger,“电力输电竞争带来的成本节约”,Power Markets Today 网络研讨会,2019 年 12 月 11 日。Chang、Pfeifenberger、Sheilendranath、Hagerty、Levin 和 Jiang,“电力输电竞争带来的成本节约:迄今为止的经验和增加客户价值的潜力”,2019 年 4 月。“对 Concentric Energy Advisors 关于竞争性输电报告的回应”,2019 年 8 月。Ruiz,“输电拓扑优化:在运营、市场和规划决策中的应用”,2019 年 5 月。Chang 和 Pfeifenberger,“精心规划的电力输电节省客户成本:改进的输电规划是向碳约束未来过渡的关键”,WIRES 和 Brattle Group,2016 年 6 月。Newell 等人“纽约交流输电升级方案的成本效益分析”,代表 NYISO 和 DPS 员工,2015 年 9 月 15 日。Pfeifenberger、Chang 和 Sheilendranath,“ 迈向更有效的输电规划:解决不够灵活的电网的成本和风险 ”,WIRES 和 Brattle Group,2015 年 4 月。Chang, Pfeifenberger, Hagerty,“ 电力输电的益处:识别和分析投资价值 ”,代表 WIRES,2013 年 7 月。Chang, Pfeifenberger, Newell, Tsuchida, Hagerty,“ 关于加强 ERCOT 长期输电规划流程的建议 ”,2013 年 10 月。Pfeifenberger 和 Hou,“ 接缝成本分配:支持跨区域输电规划的灵活框架 ”,代表 SPP,2012 年 4 月。Pfeifenberger, Hou,“ 美国和加拿大输电基础设施投资的就业和经济效益 ”,代表 WIRES,2011 年 5 月。
摘要。铜互连尺寸的减小会降低其性能,因为表面散射增加,从而显著缩短了有效电子平均自由程。与 Cu 不同,CNT 支持弹道电子流,平均自由程值较低,这极大地诱使研究人员用碳纳米管代替铜。因此,本文提出了一种基于有限差分法的精确方法,描述碳纳米管互连在时间域中的行为。所提出的算法在 MATLAB 工具中实现。研究了互连之间的串扰和引起的延迟与其长度和技术节点(45nm、32nm、22nm 和 16nm)的关系。将所提出的方法得到的值与 PSPICE 仿真工具得到的值进行了比较。这些结果之间具有很好的一致性,表明 CNT 互连在串扰引起的延迟方面比铜互连更有效。
太阳能*奖励是一个基于生产的激励计划。参与的客户也将获得NEM福利。每月或年付款给太阳能系统的所有者,以换取太阳系生产的能源的可再生能源信用(REC)。•激励付款是基于太阳系生产或期望每月生产的千瓦时数量。•具有生产计的系统具有基于PV Prod帐户中捕获的实际生产的激励措施。•没有生产计的系统(10kW DC且更少),每年根据太阳能应用程序中列出的NREL PV瓦值的KWH估算来支付。