[2]`A. Haro等。不变流形的参数化方法:从严格的结果到e显计算。卷。195。应用数学科学。Springer International Publishing,2016年。ISBN:9783319296623。
摘要 — 最近,使用现代机器学习技术解码和解释脑信号的脑机接口 (BCI) 领域取得了实质性进展。虽然脑电图 (EEG) 提供了一种与人脑交互的非侵入性方法,但获取的数据通常严重依赖于受试者和会话。这使得将这些数据无缝整合到现实世界的应用中变得棘手,因为受试者和会话数据的差异可能导致漫长而繁琐的校准要求和跨受试者泛化问题。专注于稳态视觉诱发电位 (SSVEP) 分类系统,我们提出了一种生成高度逼真的合成 EEG 数据的新方法,这些数据不受任何受试者、会话或其他环境条件的影响。我们的方法称为主题不变 SSVEP 生成对抗网络 (SIS-GAN),它使用单个网络从多个 SSVEP 类别生成合成 EEG 数据。此外,通过利用固定权重预训练的主题分类网络,我们确保我们的生成模型对主题特定特征保持不可知,从而生成可应用于新的以前未见过的主题的主题不变数据。我们广泛的实验评估证明了我们的合成数据的有效性,在使用我们的主题不变合成 EEG 信号进行训练时,可实现卓越的性能,在零校准分类任务中可提高高达 16 个百分点。
摘要 在基于脑电图 (EEG) 的分类任务中发现和利用共享的、不变的神经活动对于跨受试者或 EEG 记录会话的解码模型的通用性具有重要意义。虽然深度神经网络最近成为通用的 EEG 特征提取器,但这种迁移学习方面通常依赖于先前的假设,即深度网络自然表现为受试者(或会话)不变的 EEG 特征提取器。我们建议在模型训练期间以系统的方式进一步实现 EEG 深度学习框架的不变性。我们引入了一种对抗性推理方法来学习在判别设置内对受试者间变异不变的表示。我们使用公开的运动想象 EEG 数据集和基于卷积神经网络的 EEG 解码模型在提出的对抗性学习框架内进行实验研究。我们展示了跨学科模型转移场景中的结果,展示了学习网络的神经生理学解释,并讨论了对抗性推理为不断发展的 EEG 深度学习领域提供的潜在见解。
摘要:量子不变性是指任何量子相干态与相应的测量结果统计集合之间的关系。讨论了“测量”的充分概括,以涉及由于基本普朗克常数而导致的任何量子相干态与其在测量后作为统计集合的统计表示之间的差异。集合论推论是对选择公理的奇特不变性:任何相干态都排除任何良序,因此也排除了选择公理。它应该等同于测量后的良序集,因此需要选择公理。量子不变性是量子信息的基础,并将其揭示为无序量子“多”(即相干态)与良序“许多”测量结果(即统计集合)之间的关系。它开辟了一个新视野,其中所有物理过程和现象都可以解释为量子计算,实现量子信息的相关操作和算法。所有纠缠现象都可以用量子信息来描述。量子不变性阐明了广义相对论和量子力学之间的联系,从而阐明了量子引力问题。
(总统令第 47 条2000 年 12 月 28 日,n. 445) 签名人:GIORGIO CARDIN 1967 年 9 月 30 日出生于米兰 现居住于 SETTIMO MILANESE
第一步,将有关角轨道动量绝热不变性的埃伦费斯特推理应用于氢原子中的电子运动。结果表明,从氢原子中考察的轨道角动量可以推导出从量子能级 1 n + 到能级 n 的能量发射时间。发现这个时间恰好等于焦耳-楞次定律规定的电子在能级 1 n + 和 n 之间跃迁的时间间隔。下一步,将输入量子系统的机械参数应用于计算电子跃迁特征时间间隔。这涉及氢原子中的相邻能级以及受恒定磁场作用的电子气中的朗道能级。