作为结论,这项研究通过表明点云处理和逆传感器建模的战略改进可以显着提高过渡网格图(TGM)的性能,从而为研究问题提供了答案。该研究通过参数确定性能和计算负载之间的适当平衡,例如0.5 m的网络分辨率和8 Hz的执行率,对于在城市环境中有效的实时导航至关重要。此外,还显示了高级3D点云数据的集成,并通过精制的预处理管道提供了精度和计算效率之间的最佳平衡,这证实了在动态设置中提出的模型的鲁棒性和适应性。这些结果不仅证实了所提出的方法的效率,而且还为未来的研究奠定了基础,旨在将这些模型扩展到更复杂的环境,最终有助于更安全地利用技术用于自动驾驶。
图1。我们引入了一个时空优化器,该优化器概括了亚当和拉普拉斯平滑(大步骤)。除了时间过滤(如Adam)外,它还将各向异性交叉双侧过滤器应用于跨空间的梯度。我们的跨双边滤波器可以减少梯度噪声,并通过在先前施加分段平滑度来改善各向异性目标的条件。我们的方法可以使(a)纹理,(b)体积和(c)在非常低的样品计数下的纹理和(c)网格的更快收敛和更高质量的逆渲染;所有实验仅使用每个像素的1个样品进行梯度估计。(a)对于100次迭代后粗糙度纹理恢复,我们的方法融合了,而其他方法则具有伪像。(b)用于体积密度和反照率恢复仅50次迭代,我们的方法已经可以恢复粗糙的形状和颜色。更高的样本计数进一步优化可恢复详细信息。(c)对于网格恢复,我们的方法能够比竞争方法更快地恢复尖锐的功能(顶行,立方体)和薄结构(底行,龙)。在窗户上改编的场景©Bernhard Vogl,Autumn Field©Jarod guest and Sergej Majboroda,高分辨率烟雾羽流©Jangafx,Kloppenheim 06©Greg Zaal和Asian Dragon和Asian Dragon©Stanford Computer Graphics Labrications。
有两种方法可以分析有关人的数据,如果您愿意的话,有两种“文化”(Breiman,2001; Snow,1959)。一个人是心理学文化 - 现在已经超过一个世纪了,完全熟悉。对于行为科学家来说,1个数据是一种结束的手段,用于改善我们关于人类思想的理论。数据可用于测试竞争理论并开发新的理论。最终,数据都是为了让我们了解理论是正确和重要的。另一种文化(将其称为机器学习文化)是新的,但迅速增长。这种文化就是要使用大量的行为数据来预测人们会做什么。这种文化所产生的算法现在在社会的范围内广泛运作,包括在社交媒体上为人们策划内容,推荐产品(书籍,电影等)。),并自动化专家决策。机器学习文化与心理文化形成鲜明对比。它是成功的算法,在不利用心理学的理论见解的情况下成功地预测行为。
摘要:这项工作研究了与非反向降压转换器集成的电池储能系统的结构。动态建模以及控制器的设计,目的是克服在市场上广泛传播的模型中存在的缺点。到此为止,开发了转换器的详细建模,以获得传输功能以及用于调整控制器的简化建模。使用PLECS软件中的模拟和在循环中的硬件平台上验证了该系统,在该平台上观察到其操作模式的灵活性和可靠性。恢复:este trabalho研究Arquitetura de um sistema de Armazenamento de Energia em baterias Integrado com um Compersor buck-buck-boost n〜ao倒置。desenvolve-se uma Modelagem dinˆamica,al´em dos projetos dos dos controladores,com intuito de sanar os Infornientes存在no Modelo difundido no mercado。para isso,'e desenvolvida tanto a Modelagem detalhada do consermor,fim de se obter as fim的fun这些转移量,Quanto a Modelagem sinflificada,Utilizada nos nos nos ajustes dos dos Controladores。valya的do sistema。
摘要:总和频率产生(SFG)具有多个应用,从光源到成像,其中有效的转换需要较长的相互作用距离或二次非线性材料中的较大的浓度。metaSurfaces为增强SFG的基本途径提供了与集成超薄平台的极端领域增强的共鸣。在这项工作中,我们为纳米图案的元表面进行多个客观拓扑优化的一般理论框架,以促进高效sfg并同时选择发射方向并量身定制元清化方向。基于此框架,我们提出了新颖的跨表面设计,展示了最终功能,以转化从成像到极化法的外观非线性发光的光线。例如,我们的一个元面积产生高度极化和方向性的SFG发射,其效率超过0.2 cm 2 gw-1在10 nm信号工作带宽中。
图 29 (a) 每个 I/O 电阻测量的开尔文结构;(b) 键合铜柱的 SEM 横截面 ......................................................................................................... 44 图 30 带 Ru 封盖的 Cu-Cu 键合测试台 ............................................................................. 45 图 31 铜上钌的沉积过程 ............................................................................................. 45 图 32 30 分钟 FGA(合成气体退火)退火后表面 Cu 和 Ru 的百分比 [98] ............................................................................................................. 46 图 33 450°C FGA 退火后,带有针孔的 Ru 表面上的扩散 Cu ............................................................................. 47 图 34 用于研究填充的测试台制造流程 ......................................................................................... 49 (b) 使用 Keyence 7000 显微镜对集成结构进行的顶视图,描绘了顶部芯片上的通孔密度 ............................................................................................................................. 50 图 36 (a) 200 次循环氧化铝 ALD 后扫描 EDX 映射区域的 SEM 图像;(b) 集成结构的顶视图,突出显示了填充覆盖研究区域;(c) EDX 映射结果描绘了铝和氧 pe 的区域 ............................................................................................................................. 51 图 37 200 次循环氧化铝 ALD 后脱粘底部芯片的 FIB 横截面描绘 ............................................................................................................................. 52 图 38 (a) 200 次循环真空清除 ALD 后 EDX 研究的不同区域 - 底部芯片正下方通孔区域(区域 A)、距最近通孔 300 µm 的区域(区域 B)、靠近边缘的区域(区域 C); (b) 三个 r 中的 Al/Si 比率 ...................................................................................................................................... 52 图 39 (a) 集成结构的对角线切割;(b) 描绘平滑填充区域和无填充的受损区域后集成结构横截面的近视图;(c) 描绘填充高达 300 µm 的横截面的未放大图像 ............................................................................................. 54 图 40 (a) ZIF-8 MOF 化学和结构;(b) 示意图表示 ALD ZnO 和转化为气相沉积 MOF,体积膨胀和间隙填充约为 10-15 倍。 ........................................................................................................................................... 56 图 41 在完全填充芯片到基板间隙后,距离最近通孔 300 µm 的集成结构横截面的 EDX 映射.............................................................................57 图 42 横截面的 SEM 图像显示抛光模具未渗透到通孔和芯片与基板的间隙中,从而使上述结果可信 ............................................................................................. 58 图 43 (a) 测试台示意图,顶部芯片具有通孔 Cu-Cu 键合到底部基板;(b) Cu-Cu 键合测试结构的 SEM 横截面(面 A);(c) 键合前顶部芯片表面的铜垫/柱(面 B);(d) 键合前底部芯片表面的带有金属走线的铜柱(面 C) ............................................................................................................................. 59 图 44 20 nm ZnO ALD 后脱键合的底部芯片概览;(b) 通孔下方未沉积填充的区域 ............................................................................................................. 60 图 45 顶部芯片靠近通孔的区域,显示扩散半径为 (a) 572 µm,通孔直径为 240 µm; (b) 75 µm 直径通孔的 364 µm .............................................................. 61 图 46 20 nm ZnO ALD 后的脱粘底部芯片概览,a) 脉冲时间 250 ms 和温度 150°C;(b) 脉冲时间 1 秒和温度 150°C ................................................................................ 62 图 47 反向混合键合的工艺顺序 ............................................................................................. 63 图 48 (a) 1 个 MOF 循环后脱粘底部芯片的概览;(b) 在底部芯片中间观察到的 MOF 晶粒表明已完全渗透............................................................................................................. 64 图 49 靠近底部基板中心的 FIB 横截面,如预期的那样,显示了 500 nm MOF ............................................................................................................................................. 65 图 50 (a) 5 个 MOF 填充循环后脱粘底部芯片的概览;(b)62 图 47 反向混合键合的工艺顺序 .......................................................................................... 63 图 48 (a) 经过 1 个 MOF 循环后,脱键合底部芯片的概览;(b) 在底部芯片中间观察到的 MOF 晶粒表示完全渗透............................................................................. 64 图 49 靠近底部基板中心的 FIB 横截面,如预期的那样显示了 500 nm MOF ............................................................................................................................. 65 图 50 (a) 经过 5 个 MOF 填充循环后,脱键合底部芯片的概览;(b)62 图 47 反向混合键合的工艺顺序 .......................................................................................... 63 图 48 (a) 经过 1 个 MOF 循环后,脱键合底部芯片的概览;(b) 在底部芯片中间观察到的 MOF 晶粒表示完全渗透............................................................................. 64 图 49 靠近底部基板中心的 FIB 横截面,如预期的那样显示了 500 nm MOF ............................................................................................................................. 65 图 50 (a) 经过 5 个 MOF 填充循环后,脱键合底部芯片的概览;(b)
扩散模型最近表现出令人印象深刻的以无监督方式解决反问题的能力。现有方法主要集中于修改后层过程,但正向程序的潜力仍然在很大程度上没有探索。在这项工作中,我们提出了扩散的快捷方式采样(SSD),这是一种以零拍的方式解决反问题的新方法。,而不是从random噪声中启动,而是找到一个特定的过渡状态,该状态桥接了微观的图像y和已恢复的图像x。通过利用“输入 - 过渡状态 - 输出”的快捷路径,SSD可以通过更少的步骤实现精确的修复。在实验上,我们将SSD对多个代表性的IR任务的有效性进行了影响。我们的方法与最先进的零射击方法(100 NFE)相比,只有30个NFE实现了竞争性,并在某些任务中以100个NFE的优于它们。代码可在https://github.com/gongyeliu/ssd上使用。
摘要:光子时间晶体是现代光学物理学中一种新型的光子系统,导致具有新属性的设备。但是,到目前为止,由于时间晶体结构和拓扑特性之间的复杂关系,设计具有特定拓扑状态的光子时间晶体仍然是一个挑战。在这里,我们提出了一种基于学习的方法来应对这一挑战。在带有时间反演对称性的光子时间晶体中,每一个由动量间隙隔开的频带都可以具有非零量化的浆果相。我们表明,神经网络可以学习时间晶体结构和浆果相之间的关系,然后根据给定的浆果相特性确定光子时间晶体的晶体结构。我们的工作显示了一种将机器学习应用于时变光学系统的逆设计的新方法,并具有潜在的扩展到其他字段,例如随时间变化的声音设备。
摘要。模型反转(MI)攻击旨在通过利用输出信息来重建来自发布模型的隐私敏感培训数据,从而引起了人们对深神经网络(DNNS)安全性的广泛关注。最新的生成对抗网络(GAN)的进步已大大贡献了MI攻击的性能,因为它们具有具有高忠诚度和适当语义的逼真的图像的强大能力。但是,以前的MI攻击仅在Gan Pri-Ors的潜在空间中披露了私人信息,从而限制了它们在多个目标模型和数据集中的语义提取和可传递性。为了应对这一挑战,我们提出了一种新颖的方法,可以增强饮食,增强了g势元(IF-GMI),该方法分解了GAN结构并利用了中间块之间的特征。这使我们可以将优化空间从潜在代码扩展到具有增强表达能力的中间功能。为了防止gan先验产生不切实际的图像,我们将L 1球约束应用于优化过程。对多个基准测试的实验表明,我们的方法在各种设置下,尤其是在分布外(OOD)方案下显着执行先前的方法并实现最新结果。我们的代码可用:https://github.com/final-solution/if-gmi
摘要。设计了设计隐私相机(PPC)的问题。以前的设计依赖于静态点扩展功能(PSF),以防止检测私人视觉信息,例如可识别的面部特征。但是,可以通过测量对点光源的摄像机响应来轻松恢复PSF,从而使这些相机容易受到PSF反转攻击的影响。提出了一种新的动态隐私(Dypp)摄像头设计,以防止此类攻击。dypp摄像机依赖于动态的光学元素,即这种空间光模拟器来实现随时间变化的PSF,该PSF随着图片的变化而变化。PSF是通过学习的嵌入式嵌入,对手进行的,以同时满足用户指定目标的隐私目标,例如面部识别准确性和任务效用。对多种隐私视力任务的经验评估表明,与以前的PPC相比,Dypp设计对PSF反转功能的强大意义要大得多。此外,该方法的硬件可行性由概念验证摄像头模型验证。
