在过去的几年中,在越来越有能力高温综合电路(IC)的发展方面取得了重大进展,这些电路(ICS)可能受益于各种航空航天,汽车和能源生产系统。例如,在本次会议上的其他地方,据报道,具有两个金属互连的4H-SIC连接场效应晶体管(JFET)IC显示出500°C的电动操作超过3000小时[1]。对于这种极端温度的越来越准确且易于访问的IC设计和仿真工具显然与进一步的技术开发和应用采用有关。为此,这项工作报告了4H-SIC JFET阈值电压(V T)的理论和实验比较研究,这是底物体偏置(V s)和温度(T)的函数,从25°C(298K)到500°C(773K)。
放大器将以等于正电源的共模输入电压工作。然而,在此条件下,增益带宽和斜率可能会降低。当负共模电压摆动至负电源的 3V 以内时,可能会出现输入失调电压增加的情况。LF411 由齐纳参考偏置,允许在 g 4�5V 电源上正常电路工作。低于这些的电源电压可能会导致较低的增益带宽和斜率。LF411 将在整个温度范围内驱动 2k X 负载电阻至 g 10V。如果放大器被迫驱动更大的负载电流,但是,在负电压摆动上可能会出现输入失调电压增加,并最终在正向和负向摆动上达到有效电流限制。应采取预防措施,确保集成电路的电源永远不会反转极性,或者不会无意中将设备反向安装到插座中,因为无限电流通过 IC 内部产生的正向二极管产生的浪涌可能会导致内部导体熔断,从而导致设备损坏。
结型场效应晶体管(JFET)可能是最简单的晶体管。它具有一些重要特性,尤其是非常高的输入电阻。然而不幸的是(对于 JFET 而言),MOSFET 的输入电阻甚至更高。这一点,加上 MOS 晶体管的许多其他优点,使得 JFET 几乎过时了。目前,它的应用仅限于分立电路设计,其中它既用作放大器,又用作开关。它的集成电路应用仅限于某些运算放大器的差分输入级的设计,其中利用了它的高输入电阻(与 BJT 相比)。在本节中,我们简要介绍 JFET 的工作原理和特性。将 JFET 纳入电子学研究的另一个重要原因是,它有助于理解砷化镓器件的工作原理,这是下一节的主题。
2019年12月1日收到的手稿;修订了2020年2月26日和2020年4月19日; 2020年6月8日接受。出版日期,2020年6月30日;当前版本的日期,2021年3月19日。根据Grant TZ-94,国家研究大学高等教育学院的基础研究计划为这项工作提供了支持;俄罗斯基础研究基金会的一部分是赠款18-07-00898;部分由RFBR和NSFC在项目20-57-53004下。本文由副编辑N. Wong推荐。(通讯作者:Konstantin O.石化。)Konstantin O. Petrosyants and Lev M. Sambursky are with the National Research University “Higher School of Economics,” Moscow Institute of Electronics and Mathematics, Moscow 101000, Russia, and also with the Institute for Design Problems in Microelectronics, Russian Academy of Sciences, Moscow 124365, Russia (e-mail: kpetrosyants@hse.ru).Maxim V. Kozhukhov,Mamed R. Ismail-Zade和Igor A. Kharitonov在莫斯科电子和数学研究所,莫斯科101000,俄罗斯,莫斯科电子和数学研究所。bo li是在中国科学院的微电子学研究所,中国北京100029。数字对象标识10.1109/tcad.2020.3006044
Field Effect Devices (FET) 4.1 JFET: Construction, symbol, operation, V-I & transfer characteristics MOSFET: Construction, operation, symbol, V-I & transfer characteristics of the DMOSFET & E-MOSFET (theoretical description only for JFET & MOSFET) 4.2 DC Circuit Analysis: DC load line, Q-point & region of operation, common MOSFET configurations of common source (CS), common drain (CD) & common gate (CG),分析偏置电路(仅针对E-MOSFET&D-MOSFET的数值示例; NO JFET)4.3 AC分析:AC负载线,MOSFET的小信号(AC)模型及其等效电路,小信号(AC)的小信号(AC)共同源(CS)配置MOSFET MOSFET AMPLIFIER(包括数字)(数值)>
最新一代战斗机采用 270Vdc 电源系统 [1]。这种高压直流电源系统很难用传统断路器保护,因为电流在故障期间不会像交流电源系统那样每周期自动归零两次,因此触点电弧是一个问题。固态功率控制器 (SSPC) 是断路器的固态等效物,不会产生电弧,并且比机械断路器对故障的响应更快 [2]。目前的 SSPC 受到可用功率半导体的限制,只能支持较低的电压和电流 [8,9]。本论文介绍了 SSPC 的设计和实验结果,该 SSPC 使用 SiC 功率 JFET 作为 SSPC 电源开关,将 SSPC 功能扩展到更高的电压和电流,而其空间比 Si 电源开关实际可实现的空间更小。研究从 SSPC 电源开关的热分析开始,这将指导由 Solid State Devices Inc. (SSDI) 使用 SiCED 和/或 Semisouth LLC 的 JFET 制造的 SiC JFET 多芯片电源模块的开发。多个多芯片电源模块将并联以构成 SSPC 开关。制造的器件在静态和动态热性能以及静态和动态电气性能上进行了评估。除了 SiC 模块研究外,还完成了能够在 200ºC 下工作的高压 SSPC 控制电路的详细设计,包括详细分析、建模和模拟、详细原理图和详细图纸。最后,制造并测试选定控制电路的面包板以验证模拟结果。还开发了在 SSPC 应用特有的瞬态热条件下测试 SiC JFET 器件的方法。关键词:SiC、JFET、SSPC、热分析、多芯片
单元 1:组件 14 小时 组件简介 – 无源组件和有源组件 – 电阻器、标准化、颜色编码技术、电阻器类型 – 电容器、电容器类型 – 电感器、电感器类型、特性和规格、变压器、变压器类型。 二极管 - 原子理论 – 硅和锗的结构 – 导体、半导体、绝缘体的能带图 – 本征和非本征半导体 – PN 结二极管 – 正向和反向偏置 PN 结的特性。 单元 2:特殊二极管及其应用 8 小时 特殊二极管 – 齐纳二极管 – 发光二极管 (LED) – 光敏二极管 (LDR)。 整流器 – 半波和全波(桥式和中心抽头)整流器 – 纹波系数 – 整流器的效率和滤波电路。第 3 单元:晶体管和偏置方法 17 小时 双极结型晶体管 – 晶体管结构 – PNP 和 NPN 晶体管 – 工作模式 – 共基极配置 (CB)、共发射极配置 (CE)、共集电极配置 (CC) – 晶体管参数 – α 和 β 之间的关系 – 偏置方法 – 固定偏置 – 集电极-基极偏置 – 发射极偏置场效应晶体管 – FET 的分类 – BJT 和 JFET 的比较研究 – FET 的优点和缺点 – JFET 的结构 – JFET 特性 – MOSFET(增强和耗尽)
简介在2017年早些时候,我们在Uthaim线程中讨论了当前传送带放大器如何也可以用作IV转换器[1]。Uthaim利用了东芝JFET输入对,偏向于8mA。这些JFET当然很难获得。自然的问题是,我们如何用BJT替换JFET。偶然地遇到了Toshiyuki Beppu [2,2a]的1999年跨阻力IV电路。虽然这本质上是一个OPAMP IV电路,但输入阶段使用电流镜的原理显示了互补BJT对的简单偏置电路。也有John Broskie [2B]在2012年发表的类似巡回赛。而不是根据BEPPU使用第二电流放大阶段,然后用NFB关闭环路,而是只能将Uthaim的其余部分用于IV转换,包括输出缓冲区。当然,IV转换器不需要像Uthaim中的强大输出缓冲区。一个简单的A类BJT发射极追随者足以驱动下游阶段的典型载荷。整个电路由不超过3对互补电流镜,还有10个电阻组成。在Internet上进行了一些进一步的搜索,揭示了与上述[3,4]的非常相似的电路。实际上,我们在2011年也发表了类似的内容[5]。正如Jan Didden所说,您可以将其视为开放循环和A类简化的AD844(或平行的8倍)。那么,为什么现在要恢复呢?当时,JFET含量丰富,几乎没有HFE的单片双BJT可供选择(2SC3381BL / 2SA1349BL)。今天的情况是完全逆转的,并且像Nexen这样的SMD组件建立小型IV模块的想法相当吸引人[6]。Rutgers的确报告了相对较差(模拟)的性能,即使在低输出水平为0.25V的情况下,H3也为0.04%。尽管他选择的晶体管具有很低的电容,但HFE也很低(〜80)。通过选择高HFE(〜400)的Toshiba SMD低噪声双晶体管,我们的模拟
ISBN:9788120351424。 实际作业清单:1。 在带有和不进行引导的情况下,实现BJT Darlington发射器追随者,并确定增益,输入和输出阻抗。 2。 使用有或没有反馈的电压分隔线偏置设计并设置BJT公共发射极放大器,并根据其频率响应确定增益带宽产品。 3。 绘制JFET的转移和排水特性,并计算其漏极性,相互电导和扩增因子。 4。 设计,设置和绘制常见源JFET/MOSFET放大器的频率响应并获得带宽。 5。 绘制N通道MOSFET的转移和排水特性,并计算其参数,即;排水阻力,相互电导和扩增因子。 6。 设置和研究互补对称性B类推动功率放大器的工作并计算效率。 7。 使用FET设计和设置RC相移振荡器,并计算输出波形的频率。 8。 使用BJT设计和设置以下调谐振荡器电路,并确定振荡的频率。 (a)哈特利振荡器(b)colpitts振荡器9。 设计和设置晶体振荡器并确定振荡的频率ISBN:9788120351424。实际作业清单:1。在带有和不进行引导的情况下,实现BJT Darlington发射器追随者,并确定增益,输入和输出阻抗。2。使用有或没有反馈的电压分隔线偏置设计并设置BJT公共发射极放大器,并根据其频率响应确定增益带宽产品。3。绘制JFET的转移和排水特性,并计算其漏极性,相互电导和扩增因子。4。设计,设置和绘制常见源JFET/MOSFET放大器的频率响应并获得带宽。5。绘制N通道MOSFET的转移和排水特性,并计算其参数,即;排水阻力,相互电导和扩增因子。6。设置和研究互补对称性B类推动功率放大器的工作并计算效率。7。使用FET设计和设置RC相移振荡器,并计算输出波形的频率。8。使用BJT设计和设置以下调谐振荡器电路,并确定振荡的频率。(a)哈特利振荡器(b)colpitts振荡器9。设计和设置晶体振荡器并确定振荡的频率