课程目标:通过确定光学现象(如干扰,衍射等)的重要性,启发了量子力学的质量和概念,介绍了二元材料和磁性材料的新颖概念。课程结果:CO1:分析由于极化,干扰和衍射引起的光强度变化。二氧化碳:熟悉晶体及其结构的基础。CO3:解释量子力学的基本原理,并将其应用于颗粒的一维运动。CO4:总结介电的各种极化并对磁性材料进行分类。co5:解释量子力学的基本概念和固体的带理论。二氧化碳:使用大厅效应确定半导体的类型。单元I波光学干扰:简介 - 叠加原理 - 光的干扰 - 干扰薄膜(反射几何形状)和应用 - 薄膜中的颜色 - 牛顿的环,测定波长和折射率。衍射:简介 - 菲涅尔和弗劳恩霍夫衍射 - 由于单个缝隙,双缝隙和n斜孔(定性) - 衍射光栅 - 分散幂和刺光的能力(定性)。极化:极化的简介 - 通过反射,折射和双重折射的极化 - 尼科尔的棱镜-HALF波和四分之一波板。III单元晶体学和X射线衍射晶体学:太空晶格,基础,晶胞和晶格参数 - Bravais Lattices - 晶体系统(3D) - 配位数 - SC,BCC&FCC的包装分数,BCC&FCC- Miller Indices - 连续(HKL)平面之间的分离。X射线衍射:Bragg定律 - X射线衍射仪 - 通过LAUE的晶体结构确定和粉末方法III III III介电和磁性材料
课程目标:通过确定光学现象(如干扰,衍射等)的重要性,启发了量子力学的质量和概念,介绍了二元材料和磁性材料的新颖概念。课程结果:CO1:分析由于极化,干扰和衍射引起的光强度变化。二氧化碳:熟悉晶体及其结构的基础。CO3:解释量子力学的基本原理,并将其应用于颗粒的一维运动。CO4:总结介电的各种极化并对磁性材料进行分类。co5:解释量子力学的基本概念和固体的带理论。二氧化碳:使用大厅效应确定半导体的类型。单元I波光学干扰:简介 - 叠加原理 - 光的干扰 - 干扰薄膜(反射几何形状)和应用 - 薄膜中的颜色 - 牛顿的环,测定波长和折射率。衍射:简介 - 菲涅尔和弗劳恩霍夫衍射 - 由于单个缝隙,双缝隙和n斜孔(定性) - 衍射光栅 - 分散幂和刺光的能力(定性)。极化:极化的简介 - 通过反射,折射和双重折射的极化 - 尼科尔的棱镜-HALF波和四分之一波板。III单元晶体学和X射线衍射晶体学:太空晶格,基础,晶胞和晶格参数 - Bravais Lattices - 晶体系统(3D) - 配位数 - SC,BCC&FCC的包装分数,BCC&FCC- Miller Indices - 连续(HKL)平面之间的分离。X-ray diffraction: Bragg's law - X-ray Diffractometer – crystal structure determination by Laue's and powder methods UNIT III Dielectric and Magnetic Materials Dielectric Materials: Introduction - Dielectric polarization - Dielectric polarizability, Susceptibility, Dielectric constant and Displacement Vector – Relation between the electric vectors - Types of polarizations- Electronic (Quantitative), Ionic (Quantitative) and
流动微生物的密度在减轻和监测动量,热和溶质边界层时表现出动态特征。看到这一点,我们检查了卡森纳米流体悬浮液的流动特征,这是由于片张的拉伸而引起的。研究了辐射,不均匀的散热器或源,热经液和布朗运动的影响。流是层流和时间依赖的。检查热量和传质特征的关节影响。速度滑移边界条件被认为是研究流量特征。建模的方程式是高度耦合和非线性的。因此,对于此模型是不可能的分析解决方案。因此,我们提出了一个数值解决方案。合适的相似性被思考将原始PDE的变态变成ODE,然后通过利用基于Runge-Kutta的射击技术来解决。借助图详细讨论了各种参数在流场上的影响。同时阐明牛顿和非牛顿液。被描述,嗜热参数的增强导致热量增强,从而降低了浓度。此外,特征是生物对流刘易斯的数量和小伙子的数量降低了动感微生物的密度。关键字:MHD,热量和传质,生物概念,卡森流体,布朗运动。
讲座6:实现基本人类愿望教程教程3:练习ps3探索人类自然接受单位和谐的方法(6次讲座和3个练习教程)讲座7:理解人类作为自我和身体的共存。讲座8:区分自我的需求与身体教程4:练习ps4探索自我和身体需求的差异。第9节:身体作为自我讲座的仪器10:在自我教程中理解和谐5:练习ps5探索自我讲座中的想象力11:自我与身体的和谐与身体讲座12:计划:自我调节和健康教程6:确保自我调查和健康教程6:练习ps6与身体和社会的练习ps6练习13(6 the Family – the Basic Unit of Human Interaction Lecture 14: 'Trust' – the Foundational Value in Relationship Tutorial 7: Practice Session PS7 Exploring the Feeling of Trust Lecture 15: 'Respect' – as the Right Evaluation Tutorial 8: Practice Session PS8 Exploring the Feeling of Respect Lecture 16: Other Feelings, Justice in Human-to-Human Relationship Lecture 17: Understanding Harmony in the Society Lecture 18: Vision for the Universal Human Order Tutorial 9: Practice Session PS9 Exploring Systems to fulfil Human目标单元在大自然/存在中的和谐(4个讲座和2个练习教程)
摘要:毒性和耐药性的产生是癌症治疗的主要挑战。顺铂是最广泛使用的化疗抗癌药物之一,其最佳剂量目前备受争议。此外,其作用的剂量依赖性分子机制尚不清楚。为了评估蛋白激酶 JNK(cJun N 端激酶)信号在肺癌治疗中的作用,我们将小分子 JNK 抑制剂与顺铂相结合。我们的研究以野生型 p53(肿瘤抑制转录因子 TP53)和突变的 RAS 携带肺腺癌细胞系 A549 为模型。在这里,我们展示了顺铂浓度依赖性的 JNK 在杀死癌细胞方面的相反作用:低顺铂浓度下具有细胞保护作用,高浓度下具有促进细胞凋亡(或中性)作用。结果表明,促存活蛋白激酶 AKT 和 TP53 的激活具有时间和剂量依赖性,在暴露于不同(低和高)顺铂浓度的细胞中具有相似的激活动力学。AKT 的选择性抑制和 TP53 的激活(表达和磷酸化)导致细胞存活率降低,表明它们参与了顺铂诱导的细胞死亡调节。在与 JNK 抑制剂 SP600125 共同处理后,顺铂处理的 A549 细胞中 TP53 和 AKT 的激活水平与它们在调节细胞死亡中的作用相关。TP53 和 AKT 被认为是介导暴露于不同浓度顺铂的 A549 细胞中 JNK 抑制结果的信号蛋白。我们的研究结果表明,应激激酶 JNK 抑制和低剂量顺铂的组合,再加上药物诱导信号的操纵,可以被视为某些肺癌的有前途的治疗策略。 ■ 引言 癌症治疗的选择是战胜这种疾病的一大挑战。已知治疗耐药性有多种原因和机制,其本质是肿瘤形成细胞的异质性,这主要由癌细胞的可塑性决定,而癌细胞的可塑性又受多种因素控制。除了基因突变外,在大多数情况下,细胞之间的非遗传差异是造成这种耐药性的原因。这些因素包括表观遗传变化、微环境条件、外在生长调节因子的存在以及细胞间相互作用,所有这些因素最终都会导致信号传导改变。可以说,改变细胞状态的各种外部影响,同时改变细胞内信号传导,也可以改变细胞对治疗的敏感性。技术的进步和对信号通路的理解导致了新靶点的发现,通过这些靶点可以改善治疗结果和患者依从性。与此同时,治疗方法也发生了变化,出现了一种新的趋势,即靶向治疗,与化疗相比,靶向治疗是一种副作用最小的更好治疗策略。与化疗不同,靶向治疗会影响肿瘤细胞,通常对健康细胞的毒性较小。靶向治疗精确瞄准在肿瘤中发生改变的特定分子靶点。
此外,自 COVID-19 疫情爆发以来,开展了各种公共卫生参与活动,确定了与信息和建议相关的关键主题和系统障碍。这包括针对服务不足的社区(包括:残疾人、心理健康状况不佳的人、护理人员、离职人员、种族、性别认同、性取向、聋哑人、视力丧失、无家可归者、吸毒者和酗酒者)进行有针对性的接触,以及为伍斯特郡 2022-2032 年联合健康和福祉战略进行正式磋商。
理事会对从其自身的运营和活动中削减碳排放的直接责任,这是该净零碳计划的重点。通过自己的运营,WCC至少散发出伍斯特郡总排放量的1%,并影响更多。WCC在解决全县碳排放,气候变化对县的影响以及我们如何适应未来气候方面也起着基本作用。理事会已经对此采取了广泛的行动,并希望与合作伙伴进一步开发这项工作。理事会的净净零和生物多样性成员咨询小组正在与内阁成员合作探索并寻求县议会在应对全县气候变化方面的作用。
2024 年 4 月 15 日 JN.1 最新风险评估 JN.1 是 BA.2.86 的后代谱系,最早的样本采集于 2023 年 8 月 25 日 (1)。截至 2024 年 4 月 6 日,已有来自 121 个国家的 162 773 个 JN.1 序列提交给 GISAID (1),占流行病学第 12 周(2024 年 3 月 18 日至 24 日)全球可用序列的 93.7%。与四周前流行病学第 8 周(2024 年 2 月 19 日至 25 日,表 1)的 91.8% 相比,患病率有所上升。 JN.1 变体也是 WHO 所有四个区域中最常见的 SARS-CoV-2 变体,在流行病学第 12 周,SARS-CoV-2 序列共享一致(西太平洋区域 (WPR) 为 93.9%,东南亚区域 (SEAR) 为 85.7%,欧洲区域 (EUR) 为 94.7%,美洲区域 (AMR) 为 93.2%)。表 1:2024 年第 8 至第 12 周 SARS-CoV-2 变体的全球比例
保留所有权利。未经许可就不允许重复使用。(未经同行评审证明)是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。