图1Hekexpress®细胞的基因型表征。(a)使用靶向T抗原编码序列的引物(集1)的引物,跨Hekexpress®基因组的TLA序列覆盖率。绘图表明质粒的积分位点位于3染色体等效物(CHR3)上。(b)使用针对T抗原编码序列(集1)或CHR3(集3和4)的引物(集3和4)的引物(集3和4)的引物,(b)在人类CHR3中整合基因座的TLA序列覆盖率。 集合1的覆盖范围表明,与人类HG38基因组相比,Hekexpress®基因组(绿色箭头)中的550 kb缺失。 集合3和4的覆盖范围确认了综合质量PRTAK的连接。 (c)PRTAK质粒图最初集成在Hekexpress®细胞系中。 大小的T抗原序列在橙色的基因中,在深紫色和grnas(grna_beginning和grna_end)中指示。 (d)Chr3等效(红色)的图与550 kb缺失以及包含T抗原序列的PRTAK质粒的整合。 由TLA证实的质粒 - 染色体连接均以蓝色指示。 Hek,人类胚胎肾; TLA,靶向基因座放大。(b)在人类CHR3中整合基因座的TLA序列覆盖率。集合1的覆盖范围表明,与人类HG38基因组相比,Hekexpress®基因组(绿色箭头)中的550 kb缺失。集合3和4的覆盖范围确认了综合质量PRTAK的连接。(c)PRTAK质粒图最初集成在Hekexpress®细胞系中。大小的T抗原序列在橙色的基因中,在深紫色和grnas(grna_beginning和grna_end)中指示。(d)Chr3等效(红色)的图与550 kb缺失以及包含T抗原序列的PRTAK质粒的整合。由TLA证实的质粒 - 染色体连接均以蓝色指示。Hek,人类胚胎肾; TLA,靶向基因座放大。
行为已被利用来将直流电压测量的精度提高五个数量级。基于超导约瑟夫森结阵列的最先进的精密电压标准系统现在可以提供量子精确、内在稳定、可编程的电压,直流电压的幅度大于 10 V,合成交流电压(如正弦波和任意波形)的幅度高达 2 V rms。已经开发出各种测量技术,用于音频范围内的交流测量应用和 60 Hz 功率计量。我描述了约瑟夫森电路和测量技术的主要发展,并总结了它们在电压计量应用中的当前性能和局限性。特别是,我强调使用基于量子的系统,即使它们产生看似低不确定性和可重复的结果,也不能保证测量的准确性。最后,我简要总结了如何利用量子精确的任意波形合成通过测量水三相点处电阻器的约翰逊噪声来测量玻尔兹曼常数,以及如何利用基于量子的约翰逊噪声温度计实现实用的电子主温度标准。
血脑屏障(BBB)是血管与脑实质之间的半渗透屏障,包括内皮细胞和外排转运蛋白之间的紧密连接,可主动从中枢神经系统中清除物质。离子和小于400 da)(DA)的小脂溶性分子通常能够通过BBB,但是较大的分子无法获得[1]。虽然对于维持中枢神经系统组成和免疫特你的环境至关重要,但BBB还阻碍了潜在的转化疗法到达大脑中的预期靶标[2,3]。正在研究BBB通透性的许多策略。从广义上讲,这些策略可以归类为跨细胞和细胞细胞[4]。在经跨细胞a的抗体中,可以使分子更具亲脂性来促进跨BBB的通道,或者可以增强载体介导的转运,以绕过BBB完全绕过BBB [5]。跨细胞方法可以受到与这些类型的释放兼容的药物限制。细胞细胞的方法涉及紧密连接的破坏,这可以通过化学或物理手段进行。BBB透化的化学细胞细胞机制通常依赖于血管活性剂,高质量化合物(例如甘露醇)或对Claudin蛋白家族的抗体(与紧密
平面约瑟夫森连接是工程拓扑超导性的关键,但受到面内磁场引起的轨道效应的严重阻碍。在这项工作中,我们通过利用固有的自旋极化带和零净磁化属性来介绍通用的拓扑结构约瑟夫森连接(TAJJS)。我们提出的tajjs有效地减轻了有害的轨道效应,同时在交界处的两端稳健地托管Majorana末端模式(MEMS)。具体而言,我们证明了d x 2 -y 2 -wave tajjs中的mems出现,但在d xy波构型中消失了,从而确立了altermagnet的晶体学方向角度θ作为拓扑的新控制参数。MEMS的独特自旋极化为自旋分辨测量提供了明确的实验特征。此外,通过利用D x 2 -y 2 - y 2波altermagnet之间的协同作用及其超导对应物,我们的建议自然而然地扩展到高t c平台。总的来说,这项工作将Altermagnets建立为实现拓扑超导性的多功能范式,桥接概念创新,具有可伸缩的量子体系结构,这些量子架构没有轨道效应和流浪场。
图 4. 1 cm × cm NIST 1 V 可编程电压标准芯片。微波通过左侧的四条共面波导线发射到芯片上。底部和右侧的焊盘用于每个阵列的直流偏置线。每个阵列有 8 个 4096 个结点的阵列。底部阵列分为 2048、1024、512、256 的二进制序列和两个 128 个结点的阵列。
该地点为太空港开发提供了机会,通过机场东部陆侧/空侧边界围栏,将受控通道纳入机场空侧区域。A77 附近的现有交叉路口和环形交叉路口为车辆进入该地点提供了良好的陆侧活动通道。希思菲尔德零售公园位于南部 Highfield 边界外。边界南端与此相邻的是铁路线。
由外部信号控制的单个电子的转移首先由 Pothier 等人于 1991 年在具有 3 个铝结的单电子隧穿 (SET) 泵中实现。。该装置产生的电流在标称值 I = ef 的 1/103 以内,其中 e 是基本电荷,f 是泵浦频率。NIST 制造了具有 5 个结 [2] 和 7 个结 [3] 的类似泵,结果显示每个周期的误差分别约为 106 分之 5 和 108 分之 1。在这些装置中,每个电子转移事件都可以通过附近的 SET 晶体管进行监控,因此泵浦的电子实际上可以被“计数”。7 结泵足以用于基础计量,特别是基于计数电子的电容标准 [4]。此类标准于 1998 年首次展示 [5],最近已完成完整的不确定度预算 [6]。过去 10 年,人们的努力并未追求更低的误差率,而是集中于 (1) 了解误差率理论与实验之间的巨大差异 [7–10]、(2) 量化泵用于电容标准时的性能限制 [11],以及 (3) 通过使用更少的结实现相同的误差率来简化泵操作 [12,13]。此外,人们还探索了其他几种可以通过传输单个电子(或超导状态下的库珀对)产生电流的装置。在 [14] 中可以找到对这些方法的广泛(但有些过时)的回顾。请参阅本书 [15] 中 Kemppinen 等人的文章。了解最近的参考资料和对这种新方案的详细讨论。总的来说,这些方法承诺的电流比 SET 泵可能提供的电流大得多,但尚未证明计量所需的精度。本文首先回顾了 SET 泵的操作和错误机制,然后讨论了使用 SET 泵的几个实际方面。目的是让读者了解在计量实验中实施 SET 泵的主要挑战,并
对于高相干性固态量子计算平台来说,微波频率下低损耗的电介质是必不可少的。在这里,我们通过测量集成到超导电路中的由 NbSe 2 –hBN–NbSe 2 异质结构制成的平行板电容器 (PPC) 的品质因数,研究了六方氮化硼 (hBN) 薄膜在微波范围内的介电损耗。在低温单光子范围内,提取的 hBN 微波损耗角正切最多在 10 −6 中间范围内。我们将 hBN PPC 与铝约瑟夫森结集成,以实现相干时间达到 25 μs 的传输量子比特,这与从谐振器测量推断出的 hBN 损耗角正切一致。与传统的全铝共面传输相比,hBN PPC 将量子比特特征尺寸缩小了约两个数量级。我们的研究结果表明,hBN 是一种很有前途的电介质,可用于构建高相干量子电路,它占用空间大大减少,能量参与度高,有助于减少不必要的量子比特串扰。广义的超导量子比特包括由电感和电容元件分流的约瑟夫森结,它们共同决定了它的能谱 1 。虽然理想情况下,组成超导量子比特的材料应该是无耗散的,但量子比特退相干的主要因素是量子比特的电磁场与有损体积和界面电介质的相互作用 2 。在典型的超导电路中,介电损耗可能发生在约瑟夫森结的隧穿势垒中,以及覆盖设备的许多金属和基底界面的原生氧化层中 3、4 。这些电介质通常是具有结构缺陷的非晶态氧化物,可以建模为杂散两能级系统 (TLS)。虽然这些 TLS 的微观性质仍有待完全了解,但已确定 TLS 集合与超导量子电路中的电磁场之间的相互作用限制了量子比特的相干性和超导谐振器的品质因数。人们还怀疑 TLS 可能存在于设备制造过程中留下的化学残留物的界面处 4、5。
紧密连接在上皮细胞和内皮细胞中形成细胞旁屏障,并调节液体、分子的扩散以及细胞在组织隔室中的渗透。紧密连接由一组整合膜蛋白组成,包括紧密连接蛋白家族、紧密连接相关 Marvel 蛋白家族、连接粘附分子家族以及锚定细胞骨架的蛋白质,例如小带闭合蛋白和扣带蛋白家族。神经递质或细胞因子等多种因素以及缺血/缺氧、炎症、肿瘤发生、磷酸化/去磷酸化、泛素化和棕榈酰化等过程调节紧密连接蛋白。紧密连接蛋白参与导致神经胶质瘤形成的肿瘤发生过程。在神经胶质瘤中,紧密连接蛋白、闭合蛋白和小带闭合蛋白-1 丰度明显失调,并且已观察到它们的错位。细胞间粘附力减弱和细胞分离是导致神经胶质瘤渗入周围组织的原因。此外,血脑屏障的旁细胞通透性(由紧密连接蛋白参与形成)会影响肿瘤周围水肿的发展,同时也会影响药物向神经胶质肿瘤的输送速度。了解脑肿瘤中的连接和旁细胞环境对于预测神经胶质肿瘤进展和化疗药物输送的可行性至关重要。这些知识也可能阐明高级别和低级别神经胶质瘤之间的差异。
在本文中,我们简要概述了约瑟夫森结的各种选项,这些选项应可扩展到纳米范围以用于纳米级数字超导技术。这种结应具有高临界电流 I c 和正常态电阻 R n 值。另一个要求是在制造过程中晶圆上结参数的高可重复性。我们认为“可变厚度桥”几何的超导体 - 正常金属 - 超导体 (SN-N-NS) 约瑟夫森结是满足这些要求的有希望的选择。在 S 电极之间的距离与 N 材料的相干长度相当的情况下,对 SN-N-NS 结进行了理论分析。对于流过结的电流为 I c 量级的结,推导出提供 S 电极中超导存在的结几何参数的限制。分析了结加热以及可用的散热机制。所得结果表明,可以使用成熟的工艺流程,利用广泛使用的材料组合(如 Nb/Cu)制造出具有高(亚毫伏)I c R n 乘积值的 SN-N-NS 结。结面积可以缩小到在 40 纳米工艺框架内制造的半导体晶体管的面积。