Nipponbare是一种Japonica水稻品种,已被广泛用作水稻的标准参考基因型[1]。大米(Nipponbare)基因组是20多年前测序的最早测序的作物基因组之一[2]。大米基因组的第1个序列于2002年完成,是国际水稻基因组测序项目,2005年的植物基因组学领域的主要英里石[3]。这些国际合作努力提供了作物工厂的第一个基因组。Nipponbare基因组组装含有间隙,主要是由于重复的DNA序列。在2005年,这些差距总共约为18.1 MB,大部分来自centromeres和端粒区域。对技术进步和正在进行的研究工作的测序,随着时间的推移改善了水稻基因组序列[4,5]。thor的努力,以提高2013年的裸露参考基因组组件的质量,从而大大提高了cDNA序列和基因注释的精度,而它仍然不完整[5]。在人类基因组中,在组装和特征化方面已取得了最新的迈进,先前未开发的8%的人类基因组,尤其是包括端粒序列[6]。
摘要:最近发现的Jingmenvirus组包括具有分段基因组的病毒,正极性的RNA以及几种与邻属蛋白酶成员蛋白质较远的蛋白质的蛋白质。据报道,一些Jingmenvirus组成员,即unsshan病毒(ALSV)和Jingmen Tick病毒,是tick传播的人类病原体,可能引起多种症状。ALSV广泛分布在欧亚大陆,但没有可靠的测定可以检测到它的存在。我们描述了用于ALSV检测的QPCR系统。我们的数据表明,该系统可以检测到样品中ALSV的10 4份。该系统没有显示出在欧亚大陆循环的常见tick传播病毒的扩增,即扬孔tick病毒(这是另一个jingmenvirus群体成员)或临床属的一些已知成员。QPCR系统进行了测试,没有ixodes ricinus,I。Persulcatus,Dermacentor reticulatus,D。Marginatus,Haemaphysalis concinna和H. Japonica Ticks的非专业信号。QPCR系统也没有针对人类和绵羊血清的非十个信号。总体而言,此处描述的QPCR系统可用于可靠和定量的ALSV检测。
摘要 由于易于操作、易于活体观察且与哺乳动物惊人地相似,鸡胚胎已成为生物医学研究的主要动物模型之一。尽管从技术上讲可以对鸡进行基因组编辑,但鸡的较长繁殖周期(6 个月才能成熟)使其成为不切实际的实验室模型,并阻碍了其在研究中的广泛应用。日本鹌鹑(Coturnix coturnix japonica)是一种有吸引力的替代品,它与鸡非常相似,但决定性的优势是繁殖周期要短得多(1.5 个月)。近年来,已经描述了转基因鹌鹑品系。它们中的大多数是使用复制缺陷型慢病毒生成的,这种技术存在多种局限性。在这里,我们介绍了一种在鹌鹑中进行转基因的新技术,该技术基于在循环原始生殖细胞 (PGC) 中体内转染质粒。该技术简单、高效,并且允许使用在其他模型中开发的无限多种基因组工程方法。此外,我们还建立了一个集中鹌鹑基因组和技术信息的网站,以促进基因组编辑策略的设计,展示过去和未来的转基因鹌鹑品系,并促进鸟类社区内的合作。
这篇小型评论探讨了大型藻类基因组编辑的现状和挑战。尽管这类生物具有生态和经济意义,但基因组编辑的应用有限。虽然 CRISPR 功能已在两种褐藻(Ectocarpus species 7 和 Saccharina japonica)和一种绿藻(Ulva prolifera)中得到证实,但这些研究仅限于概念验证演示。由于编辑效率相对较低,所有研究还(共同)以腺嘌呤磷酸核糖基转移酶为目标来富集突变体。为了推动该领域的发展,应该注重推进辅助技术,特别是稳定转化,以便可以筛选出具有效率的新型编辑试剂。还需要开展更多工作来了解这些生物中的 DNA 修复,因为这与编辑结果紧密相关。为大型藻类开发高效的基因组编辑工具将解锁表征其基因的能力,这在很大程度上是未知领域。此外,鉴于其经济重要性,基因组编辑还将影响育种活动,以开发产量更高、生产更多商业价值化合物并表现出更强的抵御全球变化影响能力的菌株。
大米是全球一半人口的主食。基于表型的传统和标记辅助选择方法已用于稻米改进,但它们既耗时,昂贵又富有劳动力。因此,提高水稻产量的新型育种策略的研究和实施是一个很高的优先事项。基因组选择(GS)为克服这些局限性铺平了道路(Yu等,2016)。有效应用GS育种模型的主要因素是建造具有涵盖目标选择材料的基因组多样性的大规模培训人群(Fu等,2022)。然而,在应用水稻育种计划中的一般人群的实际实施仍处于新生阶段,并且对各种特征的基因组可预测性的全面评估尚未进行。为建造一个普遍代表的培训人群,我们编制了第一个中国耕种的水稻人口(CCRP),其中包括来自25个中国省份的4015个水稻加入,涵盖了五个主要的水稻种植地区,这些地区占中国年总水稻种植面积的99%以上(图1A; tables S1和S2)。这些加入包括1943年的Indica和2072 Japonica水稻加入,其中96%以上是品种和育种线(图1B;表S1和
大米的范围为0至〜30%,具体取决于存在不同的WX等位基因的存在,WX A(相对较高的AC超过20%)和WX B(中间AC为14至〜18%)是Indica和Japonica品种中发现的主要等位基因(Teng等人,2012年)。Amino acid changes in the Wx/GBSSI protein can affect the AC of rice grain, as in the well-known 'soft rice' varieties (AC of 7% – 10%) with genotypes Wx op / hp , Wx mq or Wx mp (Zhu et al ., 2015), which all have non-synonymous mutations in the N-terminal domain of Wx/GBSSI (Momma and Fujimoto, 2012)。作为“软米饭”的水稻品种(<12%)(<12%),在商业上变得更加流行,对于育种者而言(Li and Gilbert,2018),包括CRIS/CAS9介导的基因基因敲除,包括CRISPR/CAS9介导的基因敲除(Ma等,2015; Zhang et e al and al and aC aC futation and cuttate fate and ac futation n ac wex in ac n act wex and wex acty wex in ac w and wex in。但是,仅产生了有限数量的WX突变体,远远超过满足ECQ需求所需的所需。我们假设水稻粒的交流
这些微小的自由漂浮被子植物的特殊形态对浮萍科的分类学提出了挑战。尽管分子分类学有助于阐明该科的系统发育历史,但形态学数据的一些不一致导致浮萍属经常被错误分类。最近,Lemna japonica 是 Lemna minor 和 Lemna turionifera 的种间杂交种,这一发现为此类分类学问题提供了一个清晰的解释。在这里,我们证明了 L. minor 也能够与 Lemna gibba 杂交,从而在地中海地区产生一个隐秘但广泛分布的分类单元。描述了非分类单元 Lemna × mediterranea,并将其与假定的亲本种 L. minor 和 L. gibba 的克隆进行了比较。通过核和质体标记的遗传分析以及基因组大小测量表明,两种不同的细胞型(二倍体和三倍体)起源于至少两个独立的杂交事件。尽管总体相似性很高,但形态测量、生理和生化分析表明,L. × mediterranea 在大多数定性和定量特征上处于其亲本物种的中间位置,并且两种杂交细胞型也根据某些标准分开。这些数据证明,杂交和多倍化(陆生植物进化的驱动力)有助于浮萍的遗传多样性,并可能塑造了这些主要无性水生植物的系统发育历史。
这项研究调查了饮食补充葡萄Pomace粉(GP)对性能,鸡蛋质量和孵化性的影响,以及鹌鹑的血液生物化学(Coturnix Coturnix Japonica)。总共将200个鹌鹑(323.90±1.991 g体重)随机分为四个治疗组,每只复制五只十只鸟类。治疗涉及在0%(0GP),1%(1GP),2%(2GP)和4%(4GP)的基础饮食中补充GP的饮食补充。结果表明,GP显着影响饲料摄入量,卵产生和卵子的重量。1GP和2GP处理的卵产生更高,饲料转化率(FCR)更好。研究中最低的卵产量和最贫穷的FCR是4GP组。补充组的进食摄入量和卵子的重量低于0GP组。比0GP组的1GP,2GP和4GP组具有更高的蛋壳断裂强度,HAUGH单元和蛋白质指数值。等离子体总胆固醇和所有GP供应组中的高密度脂蛋白胆固醇浓度低于0GP鹌鹑。与0GP组相比,补充GP对雏鸡活体重和早期胚胎死亡率的影响很大,GP补充大大降低了早期胚胎死亡。总而言之,这项研究表明,高达2%的gp鹌鹑饮食对现场表现没有负面影响,改善了一些卵质量的特征,降低了早期胚胎死亡,并且可能有助于降低总脂质和胆固醇水平。
摘要。Ruzyati M,Sisharmini A,Apriana A,Santoso TJ,Purwanto E,Samanhudi,Yunus A.2022。CRISPR/CAS9_GRNA-OSCKX2模块盒的构建及其引入米CV。Mentik Wangi由农杆菌Tumefaciens介导。生物多样性23:2679-2689。Mentik Wangi是一种来自热带Japonica群体的芳香稻米品种,其姿势高且生产率低。高大的植物姿势使Mentik Wangi大米容易容易住宿,从而导致产量损失。因此,仍然需要提高Mentik Wangi的植物高度和生产力。SD-1(OSGA20OX-2)和CKX2基因负责半矮人特征和高生产率。这项研究旨在构建一个带有OSCKX2基因的GRNA的CRISPR/CAS9盒式模块,并将这种结构引入由Tumefaciens vector lba4404介导的Mentik Wangi水稻。也在先前对Mentik Wangi大米的研究中构建的CRISPR/CAS9_GRNA-GA20OX-CASTETE质粒的引入。结果表明,CRISPR/CAS9_GRNA-CKX2盒式模块已成功地使用Golden Gate Cloning方法构建。将CRISPR/CAS9_GRNA-CKX2和CRISPR/CAS9_GRNA-GA20OX-2盒式模块引入Mentik Wangi Rice,导致了30种通过Hygromycin选择的推定转化线。PCR分析表明,从30条变换线中,15条线对抗霉素抗性基因呈阳性。必须进行进一步的分析,以确定OSCKX2和GA20OX-2靶基因中诱变的发生。
摘要:xa13是一个隐性多效基因,对水稻抗病性起正向调控作用,对水稻育性起负向调控作用,严重制约了其在水稻育性中的应用。本研究利用CRISPR/Cas9基因编辑技术删除Xa13基因启动子部分序列,包括病原菌诱导表达元件,使编辑后的启动子区水稻失去病原菌诱导基因表达能力,但不影响叶片和花药中背景基因的表达,从而获得抗病性和正常产量。研究还筛选出一株删除目的序列、分离T 1 代(无转基因株系)外源转基因片段的抗病、育性正常植株家系,并对T 2 代水稻的重要农艺性状进行了研究。结果表明,添加/不添加外源DNA的T 2 代水稻在抽穗期、株高、单株穗数、穗长和田间结实率等方面与野生型均无统计学差异。成功转化2个重要常规水稻品种空育131(KY131,耿/粳稻)和黄华占(HHZ,鲜/籼稻),并获得抗病、丰产材料,是目前我国2个经过改良后可直接用于生产的重要常规水稻品种。转基因水稻(KY-PD和HHZ-PD)叶片中Xa13基因在病原菌侵染后没有被诱导表达,表明此方法可普遍有效应用,有利于推动xa13这一隐性抗病多效基因在水稻抗白叶枯病方面的实际应用。通过编辑基因非编码区调控基因表达的研究,为今后开展分子设计育种提供了新思路。