日期 修订 编写者 批准者 描述和状态 4/5/21 V0 MWM 更新的 HPE 模板 02/06/21 V1.0 AM 和 AS 合并(第 1 版)最终稿,已实施 CEP 优先级 04/06/21 V1.1 AM 合并(第 2 版)最终稿,用于 CEP 咨询 08/07/21 V1.2 AM 合并(第 3 版)最终稿,包含第 4 次 CEP 咨询的贡献和更新的章节 15/07/21 V1.3 AS,包含 JJ 的输入 合并(第 4 版)最终稿,已审核更新的章节和从 SIR 转移的研究主题,以及关于复杂系统分析的新章节 02/08/21 V1.4 AM 和 AS 合并(第 5 版)最终稿,可供联盟合作伙伴审查 13/10/21 V1.5 AM 和 AS 合并(第 6 版)最终稿,包含 CEP 反馈26/10/21 V1.6 AM 和 AS 最终草案版本可供最终审查 5/11/21 V1.7 MWM、AM 和 AS
本报告的撰写得益于 Commonwealth Edison、ConEdison、Southern California Edison 和美国能源部的慷慨支持。作者衷心感谢支持本报告的外部审阅者、内部审阅者、同事和赞助商。外部专家审阅者包括 ConEdison 的 John Romano、Kathryn Osenni、Natalie Kaplan、Benjamin Kleinbaum 和 Jacob Ochroch。内部审阅者包括 Aimee Bell-Pasht、Neal Elliott 和 Steve Nadel。作者还衷心感谢 Energy Performance Services Inc. 的 Peter Bassett、Leidos, Inc 的 John Nicol 和 Ron Gillooly、VEIC 的 JJ Vandette、Efficiency Vermont 的 Pat Haller、Southern California Edison 的 Mark Martinez、美国能源部的 Hayes Jones 以及 Commonwealth Edison 的 Kelly Gunn 和 Ana Villarreal 的协助。外部审阅和支持并不表示隶属关系或认可。最后,我们要感谢 Keri Schreiner 的文字编辑、Roxanna Usher 的校对,以及 Mary Robert Carter、Ethan Taylor、Mariel Wolfson 和 Ben Somberg 对本报告的帮助。
参数定义t i,j从位置i∈V到位置j∈Vb i,j电池的消耗从位置i∈V到位置j∈Vi,j,jj∈Vi,j充电B i,j,j,j,i,j∈Vi i最早的服务处于i∈Vi的最新服务时,在i∈Vi s in flation in f in n f in n o s in f in n o; i最大用户乘车时间i∈Pc k车辆容量q电池容量h充电时间从零到q q k 0充电到q q k 0的初始电池充电水平是车辆kα的电池电池kα的电池电池电池电池电量单位γ最小电池电量比率w 1,w 1,w 2的总旅行时间和总乘车时间超级乘车时间
引用Verson的引用:Gorri,JM,Ramirez,J,Ortíz,A,Martínez-Murcia,FJ,Segovia,F,Suckling,J,Leming,M,Zhang,Y,Álvarez-Sánchez,Jr RJ,A,Fernández-Jover和,GómezVilda,P,Graña,M,Merrera,F,Iglesias,R,Lekova,A,J,J,J,J,J,J,J,J,J,J,J,J,J,J,J,J,J,J,J,La Paz pinninghoff,MA,MA,MA,Rincón,M,Rincón,Rincón Z,JM 2020,“自然和人工计算中的人工互动:数据科学的进步,趋势和应用程序”,《神经典型》,第1卷。 410,页237-270。 https://doi.org/10.1016/j.neucom.2020.05.078
带有超级传导电路的电路量子电动力学(CQED)[1]是一个强大的平台,用于芯片量子光学元件和量子信息[2]。杂交超导电路根据其他系统与微波光子或人工原子的相互作用提供了对相干量子性能的访问[3-5]。近年来,通过用基于半导体的(s -n -s)JJS来代替常规铝(s -i -s)JJS(例如inas nanowires [6,7],(7],gasene)[8]和绘制图8和绘图[8],已经实现了多种混合超导码头。 对于这些s-n-s JJS,正常或半导体与超导材料接触,这使得由于超导接近效应而导致超电流到流量[11]。 Andreev Refrections [12-14]描述了此类设备中库珀的运输。 可以通过在附近的栅极电极上施加电压来调整半导体的电导率,该电极调整了库珀对运输的调整,从而调整了交界处的约瑟夫森能量。 这些半导体 - 超导体混合量量子的强大技术动机是实现栅极电压已经实现了多种混合超导码头。对于这些s-n-s JJS,正常或半导体与超导材料接触,这使得由于超导接近效应而导致超电流到流量[11]。。可以通过在附近的栅极电极上施加电压来调整半导体的电导率,该电极调整了库珀对运输的调整,从而调整了交界处的约瑟夫森能量。这些半导体 - 超导体混合量量子的强大技术动机是实现栅极电压
本报告的撰写得益于 Commonwealth Edison、ConEdison、Southern California Edison 和美国能源部的慷慨支持。作者衷心感谢支持本报告的外部审阅者、内部审阅者、同事和赞助商。外部专家审阅者包括 ConEdison 的 John Romano、Kathryn Osenni、Natalie Kaplan、Benjamin Kleinbaum 和 Jacob Ochroch。内部审阅者包括 Aimee Bell-Pasht、Neal Elliott 和 Steve Nadel。作者还衷心感谢 Energy Performance Services Inc. 的 Peter Bassett、Leidos, Inc 的 John Nicol 和 Ron Gillooly、VEIC 的 JJ Vandette、Efficiency Vermont 的 Pat Haller、Southern California Edison 的 Mark Martinez、美国能源部的 Hayes Jones 以及 Commonwealth Edison 的 Kelly Gunn 和 Ana Villarreal 的协助。外部审阅和支持并不表示隶属关系或认可。最后,我们要感谢 Keri Schreiner 的文字编辑、Roxanna Usher 的校对,以及 Mary Robert Carter、Ethan Taylor、Mariel Wolfson 和 Ben Somberg 对本报告的帮助。
Safa Baris,MD A,B, *,Hassan Abolhassani,医学博士,博士C,D, *,Michel J Reisli,Michel J Reisli,MD J,Azzeddine Tahiat,PhD K,Hiba Mohammad Shendi,Hiba Mohammad Shendi,MD Haskologlu,医学博士P,Fiven Dogu,医学博士P,Imen Ben-Mustapha,Phd Q. Ali Sobh,MD R,MD R,Nermeen Galal,MD M,MD M,Safa Meshaal,MD S,Rabab Elhawary,MD S,Aisha El-Marsafy,Marsafy,MD MD MD MD MD M,Fayhan J. Alroq al-Mon-ah al-ahr al-S. md w, tariq al Farsi, md x, nashat al sukaiti, md x, Salem al-Tamemi, MD y, Cybel Mehawej, PHD Z, Gassan DBAIBO, MD F, G, Gehad Elghazali, MD AA, Sara Sebnem Kilic, MD BB, Ferah Genel, MD CC, Ayca Kiykim, MD DD,Ugur Musabak,MD EE,Hasibe Artac,医学博士FF,Sukru Nail Guner,MD J,Rachida Boukari,MD GG,Reda Djidjik,Reda Djidjik,PhD N,Nadia Kecout,Nadia Kecout,Phd HH,Phd HH,Deniz Cagdas,Md II,MD II,PHD II,Zeinab awad awab awad kar kar kar kar kar kar yd yad sifed phared,Md。 MD A,B,Raed Alzyoud,医学博士KK,Mohamed Ridha Barbouche,医学博士,博士,Mehdi Adeli,MD LL,Rima Hanna Wakim,Rima Hanna Wakim,MD F,G,Sheeen M. Reda,MD Al-Mousa,MD U,V,Nima Rezaei,MD,PhD C,NN,Waleed Al-Hherz,Md Ooo,PP,**和Raif S. Geha,MD QQ,** Istanbul,Konya,Konya,Konya,Ankara,Ankara,Bursa,and Bursa和_ Izmir,Turkey,Turkey;伊朗德黑兰;斯德哥尔摩,瑞典;贝鲁特和比布洛斯,黎巴嫩;卡塔尔的多哈和阿拉伊安;阿尔及利亚阿尔及利亚;阿布扎比和艾因,阿拉伯联合酋长国;开罗和埃及的曼苏拉;突尼斯突尼斯;沙特阿拉伯利雅得;科威特市科威特;马斯喀特,阿曼;安曼,约旦;卡萨布兰卡,摩洛哥;和波士顿,弥撒 div>
德克萨斯大学奥斯汀分校的足迹和有益影响遍布整个德克萨斯州。除了主校区(通常称为 40 英亩)上的许多研究中心、团体、实验室和服务外,德克萨斯大学奥斯汀分校还在德克萨斯州的各个地点拥有最先进的设施,包括:JJ Pickle 研究园区,位于奥斯汀西北部的一个专门的研究园区;Lady Bird Johnson 野花中心,位于奥斯汀西南部该州指定的植物园;麦克唐纳天文台,位于德克萨斯州西部戴维斯山脉的世界领先天文研究中心之一;阿兰萨斯港海洋科学研究所,德克萨斯州墨西哥湾沿岸最古老的海洋研究站;科罗拉多河和史密斯维尔松林中的生物研究站;以及经济地质局,该局协助石油和天然气生产商,运行该州的地震监测网络,并在奥斯汀、休斯顿和米德兰运营大量设施。
荷兰癌症研究所 Oncode 研究所分子病理学部1066CX 阿姆斯特丹,荷兰 2 荷兰癌症研究所 Oncode 研究所分子致癌作用分部,1066CX 阿姆斯特丹,荷兰 3 延世大学医学院江南 Severance 医院生物医学系统信息学系,首尔 03722,韩国 4 肿瘤蛋白质组学实验室,阿姆斯特丹 UMC 医学肿瘤学系,1081HV 阿姆斯特丹,荷兰 5 荷兰癌症研究所 Oncode 研究所细胞生物学分部,1066CX 阿姆斯特丹,荷兰 6 伯尔尼大学生物医学研究中心癌症治疗耐药性集群和伯尔尼精准医学中心,3088 伯尔尼,瑞士 7 伯尔尼大学 Vetsuisse 学院动物病理学研究所,3012 伯尔尼,瑞士 8 荷兰癌症研究所临床前干预部小鼠癌症和衰老诊所,1066CX 阿姆斯特丹,荷兰 9 这些作者贡献相同l.wessels@nki.nl (LFAW)、sven.rottenberg@vetsuisse.unibe.ch (SR)、j.jonkers@nki.nl (JJ) https://doi.org/10.1016/j.celrep.2023.112538
