手稿收到2019年10月26日;修订了2020年3月9日和2020年3月30日; 2020年4月14日接受。出版日期,2020年4月27日;当前版本的日期2020年9月3日。这项工作得到了中国国家自然科学基金会的部分支持,该基金会根据授予5189084,赠款51975513和赠款51821093,部分由宗教省的自然科学基金会根据Grant LRRR20E050003的授予,部分是由Zhejiang University Special Sci-University Inti-Intientififififififififififififfiffiffiffic Findif Findifif Fiffinfiffiffiffiffiffiffiffiffiffiffienfif Fund。 2020xGZX017,部分是由国家在Grant Sklofp_zz_2002下的国家关键实验室主任基金会主任,部分由008-5116-008-03的Grant K18-508116-008-03的机器人机器人研究所在Grant K18-508116-008-03中的一部分,部分由中国的年轻人计划,部分由MIRA计划,一定程度地由MIRA计划,一定程度地依据由JSPS KAKENHI的一部分,部分由KDDI基金会,部分由KDDI基金会,部分由芬兰学院根据Grant 313448,Grant 313449(预防项目),Grant 316810和Grant 316811(Slim Project)(Slim Project)。(通讯作者:Zhibo Pang。)
这项研究得到了日本学术振兴会 (JSPS) KAKENHI(资助编号:18H03974、19KK0401、22K19238、23H00367、24K02010、22H04922(AdAMS))、日本科学技术振兴机构 COI-NEXT(JPMJPF2010)和日本医疗研究发展机构 (AMED)(24bm12230009)的支持。 名词解释(注1) CRISPR-Cas3:许多细菌都有一种名为CRISPR-Cas系统的防御系统,类似于适应性免疫。 CRISPR-Cas3属于1类CRISPR系统,2019年被报道为一种使用多蛋白复合物人工切割DNA的国产基因组编辑工具。 (注2)脱靶突变:在基因组编辑技术中,DNA序列中非预期的突变发生在特定目标序列以外的位置。最大限度地减少脱靶突变被认为对于基因组编辑技术的高度安全性至关重要。 (注3)长读测序:与传统方法相比,一次分析更长片段的DNA或RNA碱基序列的技术。在本研究中,我们使用了纳米孔测序方法,这是一种通过将序列穿过纳米级孔(纳米孔)实现高速解码的技术。
* Fujiwara:庆应义塾大学经济学系和澳大利亚国立大学克劳福德公共政策学院(电子邮件:ippei.fujiwara@keio.jp 或 ippei.fujiwara@anu.edu.au);Matsuyama:西北大学经济学系(电子邮件:k-matsuyama@northwestern.edu)。Arnaud Costinot 是本文的共同编辑。我们感谢 Timo Boppart、Francisco Buera、Shinnosuke Kikuchi、Marti Mestieri、Rachel Ngai、Dani Rodrik、Richard Rogerson、Kei-Mu Yi 以及(按时间顺序)一桥国际贸易和 FDI 会议、肯特、ES 中国、ES 澳大利亚、FRB-芝加哥、莫纳什、墨尔本、ES 欧洲夏季、STEG、圣加仑-苏黎世、牛津、东京、FRB-达拉斯、北京、CIGS、普林斯顿、悉尼、爱荷华州立大学、芝加哥、庆应义塾大学和日本银行的研讨会参与者的反馈。该项目的大部分工作是在松山自 2018 年 12 月以来访问庆应义塾大学期间进行的,最近一次是 2023 年 12 月作为其超级全球项目的客座教授进行的。最终版本是在他访问贝克尔弗里德曼研究所期间准备的。 Fujiwara 承认获得了日本学术振兴会 KAKENHI 科学研究资助 (A) 18H03638 的资金支持。适用通常的免责声明。† 请访问 https://doi.org/10.1257/aer.20230133 访问文章页面以获取更多材料和作者披露声明。
* 我们受益于 Levent Altinoglu、Gadi Barlevy、Susanto Basu、Fernando Broner、Bernard Dumas、Andrew Foerster、Masashige Hamano、Takashi Kamihigashi、Michihiro Kandori、Nobuhiro Kiyotaki、Nan Li、Alberto Martin、Kiminori Matsuyama、Masaya Sakurakawa、Jose Scheinkman、Joseph Stiglitz、Dongho Song、Jean 等人的有用评论。 Tirole、Vincenzo Quadrini、Rosen Valchev、Jaume Ventura 以及来自青山学院大学、加拿大银行、日本银行、北京大学、波士顿学院、佳能全球研究所、CREI、埃默里大学、Espol、一桥大学、日本经济研究中心、庆应义塾大学、神户大学、密歇根州立大学、莫纳什大学、新加坡国立大学、挪威商学院、冈山大学、大阪大学、RIETI、皇家霍洛威学院的研讨会参与者伦敦大学、上海交通大学大学、东海大学、东北大学、伯明翰大学、东京大学、早稻田大学、武汉大学和 NBER 暑期学院。本研究部分由 JSPS Kakenhi 18H00831、18KK0361、20H01490 和 20H00073 资助。† 波士顿学院,pguerron@gmail.com ‡ 伦敦大学皇家霍洛威学院和伦敦政治经济学院宏观经济研究中心及佳能全球研究中心,tomohih@gmail.com § 一桥大学,rjinnai@ier.hit-u.ac.jp
本研究评估了标准审查时间间隔与标准动态的关系。确定审查标准的最佳间隔有助于创造新的产品市场。本研究收集并分析了约 15,000 项有效或已撤销的法律标准的数据,得出了几个结论。首先,标准审查的有效时间间隔因标准所处的技术领域而异。其次,标准的类型(尤其是设计和符号标准)也会显著影响标准审查的有效时间间隔。第三,审查类型(例如修订)与标准的有效期限密切相关。这些发现有助于验证一个数学模型,该模型可以解释标准价值的动态。该模型可以分析标准的价值与应接受的审查类型之间的关系。该模型具有一个临界值,可以统一解释事实上的标准和法律标准在标准动态方面的情况。关键词 :法定标准、有效期限、标准类型、审查类型、动态 JEL :O30、O31、O34、L15。本研究由日本经济产业研究所 (RIETI) 开展。作者还感谢
液晶 (LC) 分子的超分子自组装引起了广泛关注,因为这些动态和自组织结构可以诱导各种高级功能,如传输、信息、传感、驱动、光功能和生物功能。分子结构的设计和分子相互作用的控制是获得高功能液晶纳米组装的关键。1-7 本文从 1D、2D 和 3D 纳米结构的设计和自组织的角度介绍了纳米结构功能液晶材料。还描述了材料设计与分子动力学 (MD) 3,8,9 模拟和高级测量 10,11 的协同作用。例如,近晶液晶材料已应用于 2D 纳米结构电解质 7,12 和水处理膜 3,13。在 2D 液晶电解质中观察到与锂离子电池一样的稳定行为。 7,12纳米结构聚合物保留了由相分离产生的二维近晶结构,从而实现了高病毒去除率。3,13通过MD模拟和X射线光谱研究了1D、2D和3D纳米结构及其高级功能之间的关系。8,9,10,11例如,通过X射线和MD模拟获得的电子密度图结果很好地解释了近晶电解质分子的2D相结构及其转变。9此外,同步加速器软X射线发射研究很好地解释了亚纳米多孔水处理液晶膜的选择性。11基于自组织动态结构的性质,液晶作为高功能软物质在各个领域具有巨大潜力。致谢:非常感谢KAKENHI JP19H05715、JST-CREST JPMJCR1422、JPMJCR20H3 和MEXT 材料研发项目JPMXP1122714694 的资金支持。
∗ 本文吸收并替换了之前以“消费准入和经济活动的空间集中:来自智能手机数据的证据”为标题发表的材料。感谢 Gabriel Ahlfeldt、Milena Almagro、Daniel Sturm、Gabriel Kreindler、Tobias Salz 以及会议和研讨会参与者的有益评论。我们感谢 Takeshi Fukasawa、Peter Defferebach 和 Yun-Ting Yeh 提供的出色研究协助。适用通常的免责声明。 “Konzatsu-Tokei (R)”数据是指在用户同意的情况下,通过 NTT DOCOMO, INC 提供的应用程序(包括地图应用程序 Docomo Chizu NAVI)从手机发送的个人位置信息构建的人流数据。这些数据被集体和统计处理,以隐藏私人信息。原始位置数据是每五分钟(最少)发送一次的 GPS 数据(纬度、经度),不包括指定个人的信息。本文件中提供的所有表格和图表的版权均属于 ZENRIN DataCom CO., LTD。我们还要感谢一桥大学的 Yaichi Aoshima 与 ZENRIN DataCom Co.,. LTD. 协调该项目;村田基金会、平和中岛基金会、鹿岛基金会、大林基金会、JSPS KAKENHI(拨款编号 21H00703)和一桥大学的资金支持;东京大学 CSIS 的联合研究支持(项目编号 954)。† 经济学系,270 Bay State Road,波士顿,马萨诸塞州 02215。电话:1-617-353-5682。电子邮件:miyauchi@bu.edu。‡ 创新研究所,2-1 Naka,国立,东京 186-8603,日本。电话:81-42-580-8417。电子邮件:nakajima.kentaro@gmail.com § 经济学系和 SPIA,JRR 大楼,普林斯顿,新泽西州 08544。电话:1-609-258-4016。电子邮件:red-dings@princeton.edu。
Andreas Dzemski: andreas.dzemski@economics.gu.se Ryo Okui: okuiryo@e.u-tokyo.ac.jp We thank two anonymous referees, Otilia Boldea, Christoph Breunig, Le-Yu Chen, Elena Erosheva, Eric Gautier, Hidehiko Ichimura, Hiroaki Kaido, Hiroyuki Kasahara, Kengo Kato, Toru Kitagawa, Arthur Lew- bel, Artem Prokhorov, Adam Rosen, Myung Hwan Seo, Katsumi Shimotsu, Liangjun Su, Michael Vogt, Wendun Wang, Wuyi Wang, Martin Weidner, Yoon-Jae Whang, and seminar participants at the Centre for Panel Data Analysis约克大学,圣加伦,HKUST,SUFE,悉尼计量经济学阅读小组,Xiamen,Cuhk Cuhk计量经济学研讨会,中国科学院,亚洲计算学会,2017年亚洲计算学会,Stju,STJU,Stju,Stju,STJU,HAKODATE,SNU,SNU,Actemia,Accm syemia,Esemia,Esemia,Esemia,Esemia,Esemia,Esemia,Esemia,Esemia,Esemia,Esemia,Esemia sisemia,Esemia syter,Esemia,Esemia sytemia,Esemia sytem, 2017年,国际小组数据会议,Tsinghua,Fudan,Bonn,Hanyang,Lund,Exeter,Montreal,Montreal,Cambridge,小组数据研讨会Amster-Dam,Barcelona GSE夏季论坛和2021 Nanyang Conemontric Workshop,以获取有价值的评论。我们特别感谢一位匿名裁判,其评论导致在手稿的预先版本中纠正了错误。Sophie Li和Heejun Lee提供了出色的研究帮助。这项研究的一部分是在Okui在京都大学,Vrije Universiteit Amsterdam,Nyu Shanghai和Seoul国立大学的一部分完成的。这项工作得到了部门研究赠款(Kojima foun-dation)20023财年的支持Browaldhs Stiftelse Grant P19-0079。
1,东京大学,邦基库(Bunkyo-Ku),东京,东京113-8656,工程学院化学与生物技术系,日本; 2关于上材料的研究计划,新生大学,瓦卡托,长野,380- 8533,日本关键词:液晶,自组织,纳米结构,纳米结构,超分子装配超分支超分子自我组成的liqiud-crystalline(lc)Molecules的liqiud-crystalline(LC)分子的变化,这是一定的变化,因为这是一定程度上的变化,因为它是一种变化,因为它是一种变化,因为它是一种变化,而有效地a了,这是一定的变化。由于这些动态和自组织的结构,可以诱导作用,光功能和生物功能。分子结构的设计和分子相互作用的控制是获得高功能性LC纳米组件的关键。1-7,纳米结构功能LC材料在1D,2D和3D纳米结构的设计和自组织方面呈现。材料设计与分子动力学(MD)3,8,9模拟和高级测量10,11的协作。例如,近晶型LC材料已应用于2D纳米结构的电解质7,12和水处理膜3,13。稳定的行为是2D LC电解质的锂离子电池。7,12高病毒去除,用于保留从相分离的2D近晶结构的纳米结构聚合物。通过MD模拟和X射线光谱研究了1D,2D和3D纳米结构及其高级功能的3,13关系。8,9,10,11,例如,2D相结构及其近晶型电解质摩勒的跃迁通过X射线和MD模拟获得的电子密度图的结果很好地解释了。9此外,通过对同步加速器设施的软X射线排放研究很好地解释了纳米多孔水处理LC膜的选择性特性。11液晶在基于自组织动态结构的性质的各个领域具有高功能性软物质具有巨大的潜力。致谢:对Kakenhi JP19H05715,JST-CREST JPMJCR1422,JPMJCR20H3和MEXT材料R&D Project JPMXP1122714694的财务支持。
稿件标题 第 1 页 2 1. 稿件标题 3 靶向具有功能性催产素受体的神经元: 4 一组用于催产素受体可视化和操作的新型简单敲入小鼠系 5 6 2. 缩写标题 7 靶向具有功能性催产素受体的神经元 8 9 3. 所有作者姓名和所属机构的列表 10 Yukiko U. Inoue 1 、Hideki Miwa 2 、Kei Hori 1 、Ryosuke Kaneko 3 、Yuki Morimoto 1 、Eriko Koike 1 、11 Junko Asami 1 、Satoshi Kamijo 2 、Mitsuhiko Yamada 2 、Mikio Hoshino 1 、Takayoshi Inoue 1 12 13 1 国立神经科学研究所生物化学和细胞生物学系、国立神经病学和精神病学中心 14 、小平、东京187-8502,日本 15 2 日本国立精神卫生研究所神经精神药理学系,国家神经病学和精神病学中心,小平,东京 187-8553,日本 17 3 大阪大学前沿生物科学研究生院综合生物学实验室 KOKORO 生物学组,大阪吹田 565-0871,日本 19 20 4. 作者贡献 21 YUI、HM 和 RK 设计了实验。YUI、HM、KH、RK、YM、EK、JA 和 SK 22 进行了实验。YUI、HM、KH、RK、MY、MH 和 TI 分析并讨论了 23 结果。YUI、HM 和 TI 撰写了手稿。所有作者都已阅读并同意手稿的最终版本。 25 26 5. 通讯地址:Yukiko U. Inoue (yinn3@ncnp.go.jp) 和 Takayoshi 27 Inoue (tinoue@ncnp.go.jp) 28 29 6. 图表数量,5 30 7. 表格数量,0 31 8. 多媒体数量,2 32 9. 摘要字数,266 33 10. 意义陈述字数,124 34 11. 引言字数,840 35 12. 讨论字数,1,218 36 37 13. 致谢 38 本研究得到日本学术振兴会 KAKENHI 资助,资助编号为 16K10004、17H05967、19H04922,39 20K06467 给 YUI,18KK0442、19K08033 给 HM,17H05937、19H04895、20H02932 给 RK。这项工作还得到了 NCNP 神经和精神疾病院内研究经费(1-1、30-9、3-9)给 HM、MY、MH 和 TI 以及日本医疗研究和开发机构 (AMED) 大编号 JP21wm0425005 给 MH、21ek0109490h0002 给 TI 的支持。 43 本研究中使用的病毒载体由 AMED 的综合神经技术疾病研究 (Brain/MINDS) 脑图谱项目提供,资助编号为 45 JP20dm0207057 和 46 JP21dm0207111。作者感谢 NCNP 生物化学和细胞生物学系所有实验室成员的支持。47 48 14. 利益冲突 49