图1。识别KCNQ1基因座中预测的调节元件。a)UCSC基因组浏览器视图描述了第一个内含子使用情况不同的KCNQ1的两个同工型,而KCNQ1OT1则是该位点中长的非编码RNA。同工型下方的轨道表示来自GWA的QT间隔相关的SNP,其位置在所有轨道中都延伸到灰色条上。出现的轨道描绘了基于心脏特异性数据集的预测调节元件,最低的三个轨道描绘了组蛋白公开可用的芯片seq实验的测序读取,标志着来自两个人类左心室的H3K27AC,并留下ATRIA ATRIA ATAC-SEQ-SEQ-seq实验。b)小鼠中KCNQ1基因座的UCSC基因组浏览器视图,其先前表征的远景增强子在KCNQ1的内含子1中。较低的两个曲目描绘了从胚胎第15天公开可用的小鼠心脏和前脑的ATAC-SEQ数据集的测序读数。
1 心血管医学部、儿科和青少年医学部、分子药理学和实验治疗学部、心律服务和儿科心脏病学部、Windland Smith Rice 心律遗传诊所和 Windland Smith Rice 猝死基因组学实验室、梅奥诊所、古根海姆 501,罗彻斯特,明尼苏达州 55905,美国;2 伯尔尼大学医院心脏病学系和生理学系转化心脏病学,伯尔尼大学医院,Bühlplatz 5,3012 伯尔尼,瑞士;3 原为辉瑞公司罕见疾病研究部门,马萨诸塞州剑桥,美国;4 伯尔尼大学医院心脏病学系,伯尔尼大学医院,瑞士伯尔尼;5 弗莱堡大学医院大学心脏中心心脏病学系,Hugstetter Str. 55,79106 弗莱堡,德国; 6 瑞士伯尔尼大学实验动物中心实验外科设施;7 美国罗切斯特梅奥诊所病毒学与基因治疗系、载体与疫苗工程实验室;8 曾就职于美国马萨诸塞州剑桥市辉瑞公司生物医学设计部;9 美国马萨诸塞州剑桥市辉瑞公司药物安全研究与开发部;10 美国普罗维登斯市布朗大学心血管研究中心;11 德国弗莱堡圣约瑟夫医院心脏病学与重症监护部
自史前时代以来,人类就依赖植物作为食物和药物。即使在现代药物唾手可得的国家,替代疗法仍然受到高度重视并被广泛使用。与现代药物不同,许多植物药尽管缺乏来自受控临床试验的安全性和有效性数据,并且作用机制通常不明确,但仍被广泛使用。造成这种情况的原因是许多植物药的成分复杂且不明确,作用机制可能涉及多个因素,并且靶点多种多样。在这里,我们回顾了普遍存在的电压门控钾通道 KCNQ 亚家族作为植物药靶点的新发现的重要性,包括罗勒、刺山柑、芫荽、薰衣草、茴香、洋甘菊、生姜以及山茶、槐树和野桐属植物。我们讨论了这些植物对癫痫、高血压和糖尿病等疾病的传统用途的影响,以及植物次生代谢物对 KCNQ 通道影响的分子机制。
在准备此元素时,都在为提供准确和最新的信息提供了每个效果,该信息符合公认的标准和惯例。尽管从实际案例中得出了案例历史,但已经为掩饰所涉及的个人身份而提出了每个效果。尽管如此,作者,编辑和出版商不得担保此处包含的信息完全没有错误,尤其是因为临床标准通过研究和调节不断变化。因此,作者,编辑和出版商对由于使用此元素中包含的材料而造成的直接或结果损害的所有责任不承担所有责任。强烈建议读者仔细注意制造商提供的任何药物或设备的信息。
自史前以来,人类已经取决于食品和医学的植物。即使在现代药物可以使用现代药物的国家中,替代性治疗仍然受到高度重视和常用。与现代药品不同,尽管缺乏从受控临床试验中得出的安全性和有效性数据,但许多植物药仍在广泛使用中,而且通常不清楚作用机制。为此做出贡献是许多植物药的复杂且不确定的组成和可能的多因素机制和多个靶标。 在这里,我们回顾了电压门控钾通道无处不在的KCNQ亚家族作为植物药的靶标的新发现的重要性,包括罗勒,卡普斯,香菜,薰衣草,薰衣草,茴香,茴香,洋甘菊,ginger,ginger,sophoria,sophoria,soperora和mallotus。 我们讨论了这些植物对疾病的传统使用的影响,例如癫痫发作,高血压和糖尿病,以及植物次生代谢物对KCNQ通道的分子机制。为此做出贡献是许多植物药的复杂且不确定的组成和可能的多因素机制和多个靶标。在这里,我们回顾了电压门控钾通道无处不在的KCNQ亚家族作为植物药的靶标的新发现的重要性,包括罗勒,卡普斯,香菜,薰衣草,薰衣草,茴香,茴香,洋甘菊,ginger,ginger,sophoria,sophoria,soperora和mallotus。我们讨论了这些植物对疾病的传统使用的影响,例如癫痫发作,高血压和糖尿病,以及植物次生代谢物对KCNQ通道的分子机制。
在过去十年中,在识别与临床疾病相关的遗传异常方面取得了巨大进展。新的实验平台将遗传变异与细胞和器官行为紊乱以及致心律失常心脏表型出现的潜在机制联系起来。诱导性多能干细胞衍生心肌细胞 (iPSC-CM) 的开发标志着在患者特定背景下研究遗传疾病的重要进展。然而,iPSC-CM 技术的重大局限性尚未得到解决:1) 看似相同的基因型扰动中的表型变异性,2) 低通量电生理测量,以及 3) 不成熟的表型可能会影响转化为成人心脏反应。我们已经开发出一种旨在解决这些问题的计算方法。我们应用了我们最近的 iPSC-CM 计算模型来预测 40 种 KCNQ1 遗传变异的致心律失常风险。将 I Ks 计算模型拟合到每个突变的实验数据,并在 iPSC-CM 模型群中模拟每个突变的影响。使用一组已知临床长 QT 表型的 15 个 KCNQ1 突变测试集,我们开发了一种基于致心律失常标志物对 KCNQ1 突变影响进行分层的方法。我们利用此方法预测其余 25 个临床意义不明的 KCNQ1 突变的严重程度。在突变扰动后,在 iPSC-CM 模型群中观察到了巨大的表型变异性。一个关键的新颖之处是我们报告了个体 KCNQ1 突变模型对成人心室心肌细胞电生理学的影响,从而可以预测突变对整个衰老过程的影响。这是将 iPSC-CM 模型中的预测反应转化为成人心室肌细胞在相同基因突变情况下的预测反应的第一步。总体而言,本研究提出了一种新的计算框架,可作为一种高通量方法,根据表型可变人群中的致心律失常行为来评估基因突变的风险。