摘要。数十亿人使用 Signal 协议在 Facebook Messenger、Google Messages、Signal、Skype 和 WhatsApp 等应用程序中进行即时通讯。然而,量子计算的进步威胁到该协议基石的安全性:Diffi-Hellman 密钥交换。实际上存在抗性替代方案,称为后量子安全,但用这些新原语替换 Diffi-Hellman 密钥交换需要对相关的安全性证明进行深入修订。虽然当前 Signal 协议的安全性已经通过手写证明和计算机验证的符号分析得到了广泛的研究,但其抗量子变体缺乏符号安全性分析。在这项工作中,我们提出了 Signal 协议后量子变体的第一个符号安全模型。我们的模型专注于 Signal 的两个主要子协议的核心状态机:X3DH 握手和所谓的双棘轮协议。然后,我们利用 Tamarin 证明器的自动证明,使用 PKC'21 中的 Hashimoto-Katsumata-Kwiatkowski-Prest 后量子 Signal 握手和 EUROCRYPT'19 中的 Alwen-Coretti-Dodis KEM 双棘轮实例化,由此产生的后量子 Signal 协议具有与其当前经典对应协议相同的安全属性。
1 印度韦洛尔基督教医学院,2 印度班加罗尔 REVA 大学,3 印度昌迪加尔医学与教育研究生院,4 印度新德里全印度医学科学院,5 印度钦奈 Kanchi Kamakoti 儿童信托医院,6 印度班加罗尔圣约翰医学院,7 印度德里 Chacha Nehru Bal Chikitsalaya,8 印度新德里健康研究与发展中心 - 应用研究协会,9 印度卢迪亚纳基督教医学院,10 印度浦那 KEM 医院与研究中心,11 印度拉克索尔 Duncan 医院,12 印度孟买 Topiwala 国家医学院和 BYL Nair 慈善医院,13 印度加尔各答 ICMR- 国家霍乱和肠道疾病研究所,14 印度马纳里 Lady Willingdon 医院,15 Makunda 基督教医院印度卡里姆詹麻风病综合医院、16 印度安得拉邦巴塔拉帕利农村发展信托医院、17 印度南杜尔巴尔 Chinchpada 基督教医院、18 印度德里大学 SSN 学院微生物学系、19 英国剑桥大学医学系剑桥治疗免疫学与传染病研究所 (CITIID)
DSA Digital Signature Algorithm ECDH Elliptic Curve Diffie-Hellman ECDSA Elliptic Curve Digital Signature Algorithm EUF-CMA Existential Unforgeability under Chosen-Message Attack FFDH Finite-Field Diffie-Hellman FIPS Federal Information Processing Standard HPKE Hybrid Public-Key Encryption IETF Internet Engineering Task Force IKE Internet Key Exchange IND-CCA Indistinguishability under Chosen-Ciphertext Attack IND-CPA Indistinguishability under Chosen-Plaintext Attack IRTF Internet Research Task Force KDF Key Derivation Function KDFEM Key Derivation Function Encapsulation Mechanism KEM Key Encapsulation Mechanism LMS Leighton-Micali Signature ML-DSA Module-Lattice-based Digital Signature Algorithm ML-KEM Module-Lattice-based Key Encapsulation Mechanism OW-CCA One-Way under Chosen-Ciphertext Attack OW-CPA One-Way under Chosen-Plaintext Attack PKCS Public-Key Cryptography Standards PRF Pseudo-Random Function RSA Rivest-Shamir-Adleman S/MIME Secure/Multipurpose Internet Mail Extensions SIKE Supersingular Isogeny Key Encapsulation SLH-DSA Stateless Hash-based Digital Signature Algorithm SSH Secure Shell SSL Secure Sockets Layer TLS运输层安全UOV UOV不平衡的油和醋XMSS扩展Merkle签名方案
摘要 —公钥密码术用于以相对较高的性能成本在通信方之间非对称地建立密钥、验证或加密数据。为了减少计算开销,现代网络协议将密钥建立和验证的非对称原语与对称原语相结合。同样,混合公钥加密是一种相对较新的方案,它使用公钥密码术进行密钥派生,使用对称密钥密码术进行数据加密。在本文中,我们提出了 HPKE 的第一个抗量子实现,以解决量子计算机给非对称算法带来的问题。我们提出了仅 PQ 和 PQ 混合 HPKE 变体,并分析了它们在两种后量子密钥封装机制和各种明文大小下的性能。我们将这些变体与 RSA 和经典 HPKE 进行了比较,并表明额外的后量子开销在明文大小上摊销。我们的基于格的 KEM 的 PQ 混合变体显示 1KB 加密数据的开销为 52%,而 1MB 明文的开销降至 17%。我们报告称,基于经典、仅 PQ 和 PQ 混合 HPKE 加密 1MB 消息分别需要 1.83、1.78 和 2.15 × 10 6 个时钟周期,其中我们注意到,将量子抗性引入 HPKE 的成本相对较低。索引术语 — 后量子、混合公钥加密、后量子混合公钥加密、混合 HPKE
1。Avinash Supe博士前董事(ME和MH)和G I手术和医学教育系的名誉教授Dean孟买 - 400012 2。Krishna G. Seshadri博士,糖尿病学和医学教育委员,管理委员会Sri Balaji Vidyapeeth,Puducherry -607 403 3。R. Sajith Kumar博士兼传染病和医学教育部门的主管MCI NODAL教职员工中心政府医学院,喀拉拉邦科塔亚姆 - 686008 4。P.V.博士 Chalam校长兼教授,泰兰加纳州RR Dist。外科Bhaskar医学院 - 500075 5。P.V.博士Chalam校长兼教授,泰兰加纳州RR Dist。外科Bhaskar医学院 - 500075 5。MCI Nodal Development Pramukhswami医学院MCI Nodal Developmer中心解剖学和医学教育召集人的Praveen Singh博士兼校长,古吉拉特邦Karamsad -388325 6。Tejinder Singh博士医学教育系Sri Guru Ram Das医学科学与研究所,旁遮普省阿姆利则 - 143501。 7。 P.V.博士 Vijayaraghavan副校长和骨科教授,钦奈-600116的Sri Ramachandra医学院MCI Nodal Center,Sri Ramachandra医学院和研究所MCI Nodal Center。 8。 新德里110029年,药理学全印度医学研究所的Subir K. Maulik博士教授。 M. Rajalakshmi博士,Tejinder Singh博士医学教育系Sri Guru Ram Das医学科学与研究所,旁遮普省阿姆利则 - 143501。7。P.V.博士 Vijayaraghavan副校长和骨科教授,钦奈-600116的Sri Ramachandra医学院MCI Nodal Center,Sri Ramachandra医学院和研究所MCI Nodal Center。 8。 新德里110029年,药理学全印度医学研究所的Subir K. Maulik博士教授。 M. Rajalakshmi博士,P.V.博士Vijayaraghavan副校长和骨科教授,钦奈-600116的Sri Ramachandra医学院MCI Nodal Center,Sri Ramachandra医学院和研究所MCI Nodal Center。8。新德里110029年,药理学全印度医学研究所的Subir K. Maulik博士教授。M. Rajalakshmi博士,
Sunita Chhapola Shukla博士被称为“印度过敏女王”是孟买过敏中心的创始人兼总监。她从KEM医院和Nair医院的MS(ENT)做了MBB。她接受了哈佛医学院的高级过敏培训,然后在孟买达达尔的Kohinoor Square建立了高级过敏中心,为一个屋顶下的所有类型的过敏提供了整体治疗。她是一名临床医生,也是一位出色的科学研究人员。她因其在过敏中的出色工作而获得多个奖项,例如亨利·克拉曼(Henry Claman Gold Medal)博士奖和V. Raju博士奖,并获得了最佳研究论文。她被2017年度最佳科学研究人员和美国印度遗产 - 国际访问奖学金的美国耳鼻喉科医生协会的2017年度最佳科学研究人员审理。她是印度珠宝奖,国家大比拉·藤制金牌奖和国际卓越奖的骄傲所有者。她曾在各种国际和国家过敏会议上介绍并发表了她的研究,并且是崭露头角的过敏医生的教师。,她因其模范服务而获得了2023年《时代医疗领袖》奖。,她帮助成千上万的患者了解了他们的过敏并控制了他们的生活,从而实现了他们中心的座右铭“为您的生活赋予翅膀”。
可以预测,将在未来二十年内构建足够强大的量子计算机。使用Shor和Grover等算法,量子计算机将能够打破许多现代加密方法,从而对全球数据安全构成重大威胁。尽管二十年似乎很长时间,但使用未来的量子技术可以对当今方法进行加密的敏感信息。因此,如果将来数据保持敏感,则应将其存储在量子安全方法中。密码学专家正在积极设计量子安全的加密技术。国家标准技术研究所(NIST)是美国商务部的机构。nist是密码学中事实上的权威,其建议在全球范围内广泛遵循。诺基亚致力于最先进的加密方法,紧随其后的是NIST的安全性发展。nist关注量子计算机的投掷物,最近启动了量子安全的加密标准,其中之一是基于模块的键盘封装机制(ML-KEM)标准。该研讨会将介绍ML-KEM及其工作原则。我们将探索哪些键合封码方法及其应用。另外,我们将讨论模块晶格和与之相关的特定问题:具有错误问题的模块学习。此问题构成了ML-KEM工作原理的基础。最后,我将提出自己的论文主题。关键字:量词后加密,晶格密码学,KEM,NIST
摘要信号使者最近引入了一种新的Asyn-Chronous Key协议协议协议,称为PQXDH(量子后扩展Diffie-Hellman),该协议旨在提供Quantum Forward的秘密,此外,除了以前的X3DH(Extended Diffie-Hellman)已提供的真实性和机密性保证外。更确切地说,PQXDH试图保护Mes-sages的机密性免受收获 - 少数分解量的攻击。在这项工作中,我们正式指定PQXDH协议,并使用两个正式的验证工具分析其安全性,即P Roverif和C Rypto V Erif。特别是我们询问PQXDH是否保留了X3DH的保证,是否涉及Quantum Forward Corport Crecrecy,以及是否可以与X3DH一起进行策划。我们的分析确定了PQXDH指定中的几个缺陷和潜在的漏洞,尽管由于我们在本文中描述的特定实现选择,这些漏洞在信号应用中并非在信号应用中得到利用。为了证明当前实施的安全性,我们的分析特别强调了对KEM的附加约束属性的需求,我们正式为Kyber定义并证明了Kyber。我们与协议设计师合作,根据我们的发现开发更新的协议规范,在该发现中,每个更改均已正式验证和验证。这项工作确定了一些陷阱,即社区应意识到升级协议的升级后安全。它还证明了与协议设计合作使用正式验证的实用性。
摘要。DOT-PRODUCT是许多机器学习和科学计算算法中广泛使用的操作。最近,NVIDIA在现代GPU架构中引入了DOT-产品指令(DP2A和DP4A),目的是加速机器学习和科学计算应用程序。这些点 - 产品指令允许在时钟周期中计算多和添加指令,与常规的32位整数单元相比,有效地实现了更高的吞吐量。在本文中,我们表明DOT-产品指令也可以用于加速基质 - 型质子和多项式卷积操作,这些操作通常在基于量子后晶格后的密码学方案中发现。特别是我们提出了高度优化的Frodokem实现,其中矩阵 - 倍数通过点 - 产品指令加速。我们还提出了专门设计的数据结构,该结构允许使用DOT-产品指令来加速多项式卷积,从而有效地实现了Saber钥匙封装机制。拟议的Frodokem实施实现了4。每秒密钥交换操作比V100 GPU上的最先进的实施情况更高。本文还介绍了在GPU平台上的第一次实施,分别在RTX3080,V100和T4 GPU上实现了124,418、120,463和31,658密钥交换操作。由于基矩阵 - 多项式卷积操作是基于晶格的加密方案中最耗时的操作,因此我们提出的技术很可能有助于其他类似的算法。在各种GPU平台上提出的KEM的高吞吐量实现允许从服务器中填充重型计算(KEMS)。这对于许多新兴应用程序(如物联网和云计算)非常有用。