摘要虽然具有证书的仅使用服务器的身份验证是全球网络上运输层安全性(TLS)协议最广泛使用的操作模式,但在许多应用程序中以不同的方式使用TLS或具有不同约束的应用程序。为了进行检查,嵌入式信息互联网客户端可能已预编程服务器证书,并且在通信带宽或计算功率方面受到了高度限制。由于量子后算法具有更大的性能权衡,因此除了传统的“签名键交换”以外的设计可能是值得的。在ACM CCS 2020上发布的KEMTLS协议使用关键的封装机制(KEMS)而不是签名在TLS 1.3握手中进行身份验证,这是一个益处,因为大多数Quantum KEMS都比PQ Sig-natures更有效。但是,kemtls有一些缺点,尤其是在客户身份验证方案中,需要额外的往返。我们探讨了情况如何随着预先分配的公共钥匙而变化,在许多情况下,在嵌入式设备,加速公共钥匙或从乐队中分发的密钥在应用程序中预先安装的公共钥匙可能是可行的。与Quantum签名后的KEM TLS(甚至是缓存的公共钥匙)相比,在带宽和组合方面,使用预分配的密钥(称为Kemtls-PDK)的Kemtl变体更有效,并且具有较小的受信任代码。使用客户端身份验证时,Kemtls-PDK比Kemtls更有效地带宽,但可以在较少的往返行程中完成客户端身份验证,并且具有更强的身份验证属性。有趣的是,使用Kemtls-PDK中的预分配的密钥会改变PQ算法适用性的景观:公共钥匙大于密码/标志/标志(例如经典的McEliece和Rainbow)的方案(例如,某些基于lattice的计划之间的差异)可以降低。我们还讨论使用预分配的公共密钥与TLS中的预共享对称键相比,如何提供隐私益处。
摘要。资源受限的设备,例如无线传感器和物联网(IoT)设备在我们的数字生态系统中已变得无处不在。这些设备生成并处理我们数字数据的主要部分。但是,由于我们现有的公钥加密方案的量子计算机即将发生威胁以及在物联网设备上可用的有限资源,因此设计适合这些设备的轻量级量化后加密(PQC)方案非常重要。在这项工作中,我们使用基于错误的PQC方案探索了学习的设计空间,以设计适用于资源约束设备的轻巧键合并机制(KEM)。我们对不同的设计元素进行了严格且广泛的分析和评估,例如多项式大小,场模结构,还原算法以及基于LWE的KEM的秘密和错误分布。我们的探索导致了轻巧的PQC-KEM Rudraksh的提议,而没有损害安全性。我们的方案提供了针对所选密文攻击(CCA)的安全性,该攻击(CCA)具有100个以上的核心SVP后量子后安全性,属于NIST级I安全类别(至少提供AES-128的安全性)。我们还展示了如何将Ascon用于基于晶格的KEM中的轻质伪随机数生成和哈希功能,而不是广泛使用的keccak用于轻量级设计。我们的FPGA结果表明,Rudraksh目前需要类似安全性的PQC KEM之间的最小面积。与最先进的面积优化的Kyber实施相比,我们的Rudraksh实施对面积的需求提高了3倍,可以在高thoughtup Kyber的频率上以63%-76%的频率运行,并且与Time-Araea-AraeApoptuct-time-Araeapoptuct-time-aftrapuctiage 〜2×2×compact compact的实施相比,
摘要。DOT-PRODUCT是许多机器学习和科学计算算法中广泛使用的操作。最近,NVIDIA在现代GPU架构中引入了DOT-产品指令(DP2A和DP4A),目的是加速机器学习和科学计算应用程序。这些点 - 产品指令允许在时钟周期中计算多和添加指令,与常规的32位整数单元相比,有效地实现了更高的吞吐量。在本文中,我们表明DOT-产品指令也可以用于加速基质 - 型质子和多项式卷积操作,这些操作通常在基于量子后晶格后的密码学方案中发现。特别是我们提出了高度优化的Frodokem实现,其中矩阵 - 倍数通过点 - 产品指令加速。我们还提出了专门设计的数据结构,该结构允许使用DOT-产品指令来加速多项式卷积,从而有效地实现了Saber钥匙封装机制。拟议的Frodokem实施实现了4。每秒密钥交换操作比V100 GPU上的最先进的实施情况更高。本文还介绍了在GPU平台上的第一次实施,分别在RTX3080,V100和T4 GPU上实现了124,418、120,463和31,658密钥交换操作。由于基矩阵 - 多项式卷积操作是基于晶格的加密方案中最耗时的操作,因此我们提出的技术很可能有助于其他类似的算法。在各种GPU平台上提出的KEM的高吞吐量实现允许从服务器中填充重型计算(KEMS)。这对于许多新兴应用程序(如物联网和云计算)非常有用。
摘要。资源受限的设备,例如无线传感器和物联网(IoT)设备在我们的数字生态系统中已变得无处不在。这些设备生成并处理我们数字数据的主要部分。但是,由于我们现有的公钥加密方案的量子计算机即将发生威胁以及在物联网设备上可用的有限资源,因此设计适合这些设备的轻量级量化后加密(PQC)方案非常重要。在这项工作中,我们使用基于错误的PQC方案探索了学习的设计空间,以设计适用于资源约束设备的轻巧键合并机制(KEM)。我们对不同的设计元素进行了严格且广泛的分析和评估,例如多项式大小,场模结构,还原算法以及基于LWE的KEM的秘密和错误分布。我们的探索导致了轻巧的PQC-KEM Rudraksh的提议,而没有损害安全性。我们的方案提供了针对所选密文攻击(CCA)的安全性,该攻击(CCA)具有100个以上的核心SVP后量子后安全性,属于NIST级I安全类别(至少提供AES-128的安全性)。我们还展示了如何将Ascon用于基于晶格的KEM中的轻质伪随机数生成和哈希功能,而不是广泛使用的keccak用于轻量级设计。我们的FPGA结果表明,Rudraksh目前需要类似安全性的PQC KEM之间的最小面积。与最先进的面积优化的Kyber实施相比,我们的Rudraksh实施对面积的需求提高了3倍,可以在高thoughtup Kyber的频率上以63%-76%的频率运行,并且与Time-Araea-AraeApoptuct-time-Araeapoptuct-time-aftrapuctiage 〜2×2×compact compact的实施相比,
摘要 - Kyber Kem,NIST选择的公共密钥加密和密钥封装机制(KEMS)的PQC标准已通过NIST PQC标准化过程进行了多种侧道攻击。但是,所有针对Kyber Kem划分程序的攻击要么需要了解密文的知识,要么需要控制密文的值以进行密钥恢复。但是,在盲目的环境中没有已知的攻击,攻击者无法访问密文。虽然盲目的侧通道攻击以对称的密钥加密方案而闻名,但我们不知道Kyber Kem的这种攻击。在本文中,我们提出对Kyber Kem的第一次盲侧通道攻击来填补这一空白。我们针对解密过程中点乘法操作的泄漏,以执行实用的盲侧通道攻击,从而实现完整的密钥恢复。,我们使用来自PQM4库的Kyber Kem的参考实现的功率侧渠道对攻击进行了实际验证,该kem在ARM Cortex-M4 MicroController上实现。我们的实验清楚地表明,在有适当准确的锤击重量(HW)分类器的情况下,我们提议的攻击仅在几百到几千个痕迹中恢复了全部钥匙的可行性。索引术语 - POST-QUANTUM密码学;盲侧通道攻击;凯伯;基于晶格的密码学;基于功率的侧通道攻击
当今使用的公钥加密方案依赖于某些数学问题的难解性,而这些问题已知可以通过大规模量子计算机有效解决。为了满足长期安全需求,NIST 于 2016 年启动了一个项目,旨在标准化后量子密码 (PQC) 原语,这些原语依赖于未知的量子计算机目标问题,例如格问题。然而,从传统密码分析的角度来看是安全的算法可能会受到旁道攻击。因此,NIST 重点评估候选算法对旁道攻击的抵抗力。本论文重点研究了两个 NIST PQC 候选方案 Saber 和 CRYSTALS-Kyber 密钥封装机制 (KEM) 对旁道攻击的敏感性。我们提供了九篇论文,其中八篇重点介绍 Saber 和 CRYSTALS-Kyber 的旁道分析,一篇演示了对 STM32 MCU 中集成的硬件随机数生成器 (RNG) 的被动旁道攻击。在前三篇论文中,我们演示了对 Saber 和 CRYSTALS-Kyber 的高阶掩码软件实现的攻击。主要贡献之一是单步深度学习消息恢复方法,该方法能够直接从掩码实现中恢复秘密,而无需明确提取随机掩码。另一个主要贡献是一种称为递归学习的新神经网络训练方法,该方法可以训练神经网络,该神经网络能够以高于 99% 的概率从高阶掩码实现中恢复消息位。在接下来的两篇论文中,我们表明,即使受一阶掩码和改组保护的 Saber 和 CRYSTALS-Kyber 软件实现也可能受到攻击。我们提出了两种消息恢复方法:基于 Hamming 权重和基于 Fisher-Yates (FY) 索引。这两种方法都可以成功恢复密钥,但后者使用的痕迹要少得多。此外,我们扩展了基于 ECC 的密钥