1 丹麦技术大学环境工程系,Kgs。丹麦林比。2 丹麦技术大学国家空间研究所,Kgs。丹麦林比,2800。联系人:Filippo Bandini (fban@env.dtu.dk) 10
●KG是一个图形结构的知识库,其中包含术语(词汇或本体论)和通过术语相关的数据实体; ●KGS基于语义Web技术(RDF,SPARQL等),通常用于敏捷数据集成; ●KGS已经被德国的研究数据生产商和经理广泛使用。
作者地址:Line H. Clemmensen,lkhc@dtu.dk,丹麦技术大学,Richard Petersens Plads 324,Kgs。丹麦林比,2800; Rune D. Kjærsgaard,丹麦技术大学,Richard Petersens Plads 324,Kgs。丹麦林比,2800,rdokj@dtu.dk。
摘要。知识图(kgs)已成为突出的数据表示和管理范式。通常受到架构(例如,本体论)的基础,KGS不仅捕获了事实信息,而且捕获了上下文知识。在某些任务中,一些公斤将自己确立为标准基准。但是,最近的工作概述依靠有限的数据集集合不足以评估方法的概括能力。在一些数据敏感领域(例如教育或医学)中,对公共数据集的访问更加有限。为了纠正上述问题,我们释放了Pygraft,这是一种基于Python的工具,生成了高度定制的域 - 不可能的模式和KGS。合成的模式包含各种RDF和OWL构建体,而合成的KG则模仿了真实世界KGS的字符和规模。最终通过运行描述逻辑(dl)追求来确保生成资源的逻辑一致性。通过提供单个管道中同时产生模式和kg的方式,Pygraft的目的是赋予在基于图形的机器学习(ML)或更一般的KG处理等领域的基准新颖方法中生成更多样化的kgs。在基于图的ML中,这应该促进对模型性能和概括能力的更全面评估,从而超越了可用基准的有限收集。Pygraft可在以下网址提供:https://github.com/nicolas-hbt/pygraft。
抽象知识图(kgs)自然能够捕获数据和知识的收敛性,从而使它们成为高度表达的框架,用于以连贯和互连的方式描述和集成异质数据。然而,基于开放世界假设(OWA),kgs中没有信息并不表示虚假或不存在;它仅反映了不完整。使用数值或符号学习模型,基于KG中现有的事实陈述来预测基于现有的事实陈述的新关系。最近,知识图嵌入(KGE)和符号学习在各种下游任务(包括链接预测(LP))中受到了相当大的关注。LP技术采用实体及其关系的潜在矢量代表来推断缺失的链接。此外,随着KGS产生的数据数量的不断增加,进行额外质量评估和验证工作的必要性变得更加明显。尽管如此,最新的kg完成方法在产生预测的同时未能考虑质量约束,从而导致建立有错误关系的kg。在医疗保健决策的背景下,准确的数据和见解的产生至关重要,包括诊断过程,治疗策略的制定以及实施预防措施。我们提出了一种混合方法,即Vise,该方法采用了符号学习,约束验证和数值学习技术的整合。Vise利用KGE捕获隐式知识并表示kg中的否定,从而增强了数值模型的预测性能。我们的实验结果证明了这种混合策略的有效性,该策略结合了符号,数值和约束验证范式的优势。VISE实施是在GitHub(https://github.com/sdm-tib/vise)上公开访问的。
例如:在 iDEX 下申请“带有集成发射控制中心的小型卫星(重量不超过 650 公斤)的可运输/移动发射系统”,创新标题为“挑战 1:带有集成发射控制中心的小型卫星(重量不超过 650 公斤)的可运输/移动发射系统”。
作为供应链的复杂性和动态挑战传统管理方法,集成大型语言模型(LLM)和知识图(KGS)是推进供应链分析的有前途的方法。本文提出了一种方法,该方法旨在利用LLMS和KGS之间的协同作用,特别着眼于增强供应商发现实践。主要目标是将大量的非结构化供应商能力数据转换为统一的KG,从而改善供应商的发现过程并增强制造商的可访问性和发现性。通过本体驱动的图形构建过程,提出的方法将KGS和基于LLM的先进的自然语言处理技术整合在一起。借助详细的案例研究,我们展示了这种综合方法不仅如何提高答案质量并提高中小型制造商的可见性,还可以增强敏捷性,并为供应链管理提供战略见解。[doi:10.1115/1.4067389]
翻译研究需要生物组织多个尺度的数据。测序和多摩学技术的进步提高了这些数据的可用性,但研究人员面临着重大的整合挑战。知识图(kgs)用于对复杂现象进行建模,并存在自动构造它们的方法。但是,解决复杂的生物医学整合问题需要在知识建模的方式上灵活。此外,现有的KG施工方法提供了强大的工具,以固定或有限选择的成本在知识表示模型中。pheknowlator(表型知识翻译器)是一个语义生态系统,用于自动化公平(可访问,可访问,可互操作和可重复使用的)本体理学基础KGS的构建,具有完全可定制的知识表示。生态系统包括kg施工资源(例如,数据准备API),分析工具(例如,SPARQL端点资源和抽象算法)和基准(例如,预构建KGS)。我们通过系统地将其与现有的开源kg施工方法进行了系统的比较,并分析其计算性能时,我们评估了生态系统。具有灵活的知识表示,Pheknowlator可以完全自定义的KG,而不会损害性能或可用性。
动机:由于药物与药物相互作用(DDI)数据集和大型生物医学知识图(kgs)的可用性不断提高,因此使用机器学习模型可以准确检测不良DDI。然而,这在很大程度上仍然是一个开放的问题,如何有效利用大型和嘈杂的生物医学kg进行DDI检测。由于其巨大的大小和公斤的噪音量,将KG与其他较小但较高质量的数据直接整合在一起通常是不那么好处(例如实验数据)。大多数现有方法完全忽略了kgs。有些试图通过图形神经网络将KG与其他数据直接集成在一起,成功有限。此外,大多数预先的作品都集中在二进制DDI预测上,而多型DDI药理学效应预测更有意义但更艰巨的任务。结果:要填补空白,我们提出了一种新方法sumgnn:知识汇总图形神经网络,该网络可以通过子图提取模块来启用,该模块可以有效地锚定在kg的相关子图上的基于自我意见的基于子分类的知识中的相关子图中的相关范围,以生成多个元素的知识和数据集成的多个频道和数据集成的频道和数据。 significant- ly improved multi-typed DDI predictions.sumgnn的表现优于最佳基线高达5.54%,而在低数据关系类型中,绩效增长尤为重要。此外,SUMGNN通过每个预测的生成的推理路径提供了可解释的预测。可用性和实施:该代码可在补充材料中找到。联系人:cao.xiao@iqvia.com补充信息:补充数据可在Online Bioinformatics获得。