Cloutier 博士是美国南阿拉巴马大学工程学院的教授、系统工程项目主席和研究生院院长。他同时在东南挪威大学康斯伯格校区任职。他的研究兴趣包括系统架构、操作概念、基于模型的系统工程和系统工程的复杂模式。他的学术记录包括 22 篇同行评审期刊文章和一本专著:CRC Press、Taylor & Francis Group 的“简化系统工程”。他是系统工程知识体系 ( https://www.sebokwiki.org ) 的主编,该知识体系每月有 >25k 名独立访客和 >68k 页面浏览量。在加入美国之前,Cloutier 博士是新泽西州霍博肯史蒂文斯理工学院系统和软件部门副教授兼副主任以及系统工程项目主任。在 Stevens,他执行了超过 400 万美元的研究经费,并指导/授予了 9 个系统工程博士学位 (Ph.D. 和 D.Sc.)。在 Stevens 之前,他在洛克希德马丁公司和波音公司工作了 20 多年(他曾担任助理技术研究员)。专业角色包括系统架构师、企业架构师和首席系统工程师。Cloutier 博士在美国海军和海军预备役服役八年。他获得了美国海军学院的理学学士学位、东方大学的工商管理硕士学位以及史蒂文斯理工学院的博士学位。
现邀请申请 15 个博士职位(“早期研究人员”),这些职位由玛丽居里创新培训网络“AUTOBarge - 欧洲智能内陆航运自主驳船培训和研究网络”资助,属于欧盟委员会“地平线 2020”计划的一部分。根据欧盟委员会的数据,到 2050 年,客运量预计将增长 42%,货运量将增长 60%。毋庸置疑,这给交通网络和我们的环境带来了巨大的负担。与其他经常面临拥堵和容量问题的交通方式相比,内陆水路运输的特点是可靠性、能源效率和增加使用能力。超过 37,000 公里的水道连接着欧洲数百个城市和工业区。在欧盟,13 个国家共享一个互联互通的水路网络,这凸显了增加内陆水路运输模式份额的潜力。除非我们能够使内陆水路具有经济竞争力,否则这不会发生。然而,由于船员成本占总成本的 60%,自主内陆船舶代表着一项令人兴奋的颠覆性技术。AUTOBarge 就是为了抓住机遇。欧洲的水道是上个世纪大部分时间我们未充分利用的重要资源。现在,随着大规模自主航运的可能性,这些运河和河流提供了一个网络,我们可以利用它,而不会像修建新道路和飞机跑道那样破坏环境。但要做到这一点,我们需要拥有新技能的新人才。这些创新者必须是远程控制、监控、智能物流、监管方面以及与内陆航运复杂性相关的许多其他领域的专家。AUTObarge 招募的 15 名早期研究人员将开启这场运输革命。AUTOBarge 的受益者包括 7 所大学:鲁汶天主教大学 (BE)、安特卫普大学 (BE)、代尔夫特理工大学 (NL)、挪威挪威科技大学 (NO)、北欧大学 (NO)、查尔姆斯理工学院 (SE)、汉堡大学 (DE)、2 家高科技公司:佩里斯克尔 (BE) 和康斯堡海事 (NO),以及 1 家非大学研究机构:国际运输法研究所 (FR)。该联盟由 10 个合作伙伴组织组成,其中包括 4 家公司、3 家非大学研究机构、2 个网络/利益相关者组织和 1 个政府组织。AUTOBarge 联合了欧洲一些最优秀、最相关的行业和关键学术机构,不仅保证了令人兴奋的跨学科、跨部门研究和培训计划,而且还为成功应用内河运输自主性奠定了基础。
新一代红外传感器 这个为期四年的项目首次让欧盟红外 (IR) 产品制造商联合获得先进的 CMOS 技术来设计新的红外传感器 由 10 个成员组成的联盟旨在获得欧洲主权,为未来的国防系统生产高性能红外传感器 法国格勒诺布尔,2023 年 1 月 10 日——Lynred 是一家为航空航天、国防和商业市场提供高质量红外探测器的全球领先供应商,今天宣布启动 HEROIC,这是一项欧洲国防基金项目,旨在开发用于下一代红外 (IR) 传感器的高度先进的电子元件,同时巩固这些最先进产品在欧洲的供应链。 HEROIC(高效读出集成电路)是由 Lynred 牵头的 10 个欧洲合作伙伴组成的联盟,是一个为期四年的项目,于本月启动,预算约为 1900 万欧元( 1980 万美元),其中欧洲国防基金出资 1800 万欧元( 1880 万美元)。HEROIC 是首个将欧洲红外制造商(其中几家是竞争对手)聚集在一起以战略性地解决共同问题的此类合作项目。该项目的主要目标是增加使用新型欧洲先进 CMOS 技术的渠道和灵活性,该技术为开发下一代高性能红外传感器提供了关键能力——这些传感器将具有更小的像素和先进的功能,可用于国防应用。总体目标之一是使欧洲获得生产高性能红外传感器的技术主权。联盟成员包括三家红外制造商:AIM(德国)、项目负责人 Lynred(法国)和 Xenics(比利时);四家系统集成商:Indra(ES)、Miltech Hellas(GR)、Kongsberg(NO)和 PCO SA(PL);一家组件提供商:IC 开发商 Ideas(NO),以及两家研究机构 CEA-Leti(FR)和塞维利亚大学(ES)。Lynred 首席战略官 David Billon-Lanfrey 表示:“Lynred 很自豪能参与这个改变游戏规则的项目,该项目旨在确保欧洲在红外传感器设计和供应方面的工业主权。该项目代表欧洲红外制造商获得与各种红外探测器和 2D/3D 架构兼容的卓越 CMOS 技术的第一阶段,同样重要的是,使其在强大的欧盟供应链中可用。”获得联盟合作伙伴从未有机会访问的最新先进 CMOS 技术对于下一代读出集成电路 (ROIC) 的可持续设计至关重要。其共同指定的平台将使每个联盟合作伙伴能够追求各自的技术路线图,并更有效地满足 2030 年后国防系统的更高性能期望。“HEROIC 项目将使 AIM 能够开发基于欧洲硅 CMOS 技术的先进 ROIC,作为其下一代红外传感器的重要组成部分,”Rainer Breiter 说,AIM IR 模块项目副总裁。“我们期待与我们的合作伙伴一起采用这种共同的方法,获取最新的先进 CMOS 技术。”
(https://maps.ccom.unh.edu/portal/apps/webappviewer/index.html?id=28df035fe82c423cb3517295d9 bbc24c#. 2021 年 12 月 10 日) ........................................................................................................................... 20 图 19:R/V Gulf Surveyor (http://ccom.unh.edu/facilities/research-vessels/rv-gulf-surveyor)。 .......... 21 图 20:RVGS 图,其中包含关键位置和拖曳点相对于船舶参考点的偏移(未按比例绘制)。 ............................................................................................................................. 21 图 21:安装了拖缆的 R/V Gulf Surveyor 甲板上的 Klein 4K-SVY 侧扫。 ............................................................................................. 23 图 22:具有声学阴影、距离尺度、第一次回波和水柱的典型 SSS 数据示例。 ........................................................................................................................................................... 24 图 23:带有集成表面声速探头的 Kongsberg EM2040P MBES。 (https://www.kongsberg.com/maritime/products/ocean-science/mapping-systems/multibeam-echo- sounders/em-2040p-mkii-multibeam-echosounder-max.-550-m/) ........................................................................... 25 图 24:安装在 R/V Gulf Surveyor 中心支柱上的 EM2040P(照片:NOAA 的 Patrick Debroisse 中尉)。 ........................................................................................................................................... 26 图 25:在 50m 范围内布置用于位置置信度检查的 SSS 线。 ........................................................................... 27 图 26:相对于 MBES 目标位置(红色)的 SSS 接触位置(蓝色)。 ......................... 28 图 27:地理参考框架和船舶参考框架中的接触位置误差。接触位置主要位于 MBES 位置的东面。 ......................................................................... 28 图 28:应用地图校正后的 SSS 接触位置。 ......................................................................... 29 图 29:应用地图校正后,在地理和船舶参考框架中看到的 SSS 接触位置 ............................................................................................................................. 29 图 30:测量区域,其中 60m 和 80m 线路平面图以红色显示。 ........................................................................... 30 图 31:掩盖马赛克(左)隐藏接触,透过马赛克(右)显示接触。 ...... 32 图 32:使用自动所有数据,显示应用增益和定位校正之前的所有线路的 SSS 马赛克。覆盖在 RNC 13283 上。...................................................................................................... 33 图 33:使用 Auto-All 数据可视化应用地图校正和 EGN 后的 SSS。....... 34 图 34:DTM(顶部)显示折射伪影,与 ping 数据(底部)中看到的伪影相同。...................................................................................................................................................................... 35 图 35:EM2040P MBES 数据的全覆盖 DTM............................................................................................................. 36 图 36:EM2040P 数据从天底滤波到 45º 后的 DTM。............................................................................. 37 图 37:EM2040P 以 300 kHz 和 50cm 分辨率收集的 MBAB。西北采集点在左侧,东南采集点在右侧。后向散射强度以分贝表示,默认比例为 10 到 -70dB。 ........................................................................................................................... 38 图 38:调整后的 NW MBES 数据可视范围为 -4 至 -28db.................................... 39 图 39:SSS 接触位置(左)和 MBES 假定的“真实”位置(右)。........................................ 40 图 40:应用地图校正后的 SSS 接触位置。原始 SSS 位置以绿色标记标注。............................................................................................................. 41 图 41:地图校正前(左)和地图校正后(右)的另一个示例,最初显示两条独立的龙虾笼线。............................................................................................. 41 图 42:应用地图校正后,两条 SSS 线之间的差异约为 7.5 米。红色框突出显示了沙波应重叠的区域。............................................................................. 42 图 43:NW 采集站点:叠加之前的 MBES(顶部)、SSS(中)和 MBES 后向散射(底部)。 ........................................................................................................................................................... 44 图 44:SE 采集点:叠加前的 MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)。 ........................................................................................................................................... 45左侧为西北方向采集点,右侧为东南方向采集点。后向散射强度以分贝表示,默认范围为 10 至 -70dB。 ........................................................................................................................... 38 图 38:调整后的西北方向 MBES 数据可视范围为 -4 至 -28db........................................ 39 图 39:SSS 接触位置(左)和 MBES 假定的“真实”位置(右)。............................................................. 40 图 40:应用地图校正后的 SSS 接触位置。原始 SSS 位置以绿色标记标注。 .................................................................................................................... 41 图 41:地图校正前(左)和地图校正后(右)的另一个示例,最初显示两条独立的龙虾笼线。 .................................................................................................................... 41 图 42:应用地图校正后,两条 SSS 线之间的差异约为 7.5 米。红框突出显示了沙波应该重叠的区域。 ........................................................................... 42 图 43:NW 采集点:MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)在叠加之前。 ............................................................................................................................................................. 44 图 44:SE 采集点:MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)在叠加之前。 ............................................................................................................................................................. 45左侧为西北方向采集点,右侧为东南方向采集点。后向散射强度以分贝表示,默认范围为 10 至 -70dB。 ........................................................................................................................... 38 图 38:调整后的西北方向 MBES 数据可视范围为 -4 至 -28db........................................ 39 图 39:SSS 接触位置(左)和 MBES 假定的“真实”位置(右)。............................................................. 40 图 40:应用地图校正后的 SSS 接触位置。原始 SSS 位置以绿色标记标注。 .................................................................................................................... 41 图 41:地图校正前(左)和地图校正后(右)的另一个示例,最初显示两条独立的龙虾笼线。 .................................................................................................................... 41 图 42:应用地图校正后,两条 SSS 线之间的差异约为 7.5 米。红框突出显示了沙波应该重叠的区域。 ........................................................................... 42 图 43:NW 采集点:MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)在叠加之前。 ............................................................................................................................................................. 44 图 44:SE 采集点:MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)在叠加之前。 ............................................................................................................................................................. 45........... 42 图 43:NW 采集点:MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)在叠加之前。 ............................................................................................................................................................. 44 图 44:SE 采集点:MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)在叠加之前。 ............................................................................................................................................................. 45........... 42 图 43:NW 采集点:MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)在叠加之前。 ............................................................................................................................................................. 44 图 44:SE 采集点:MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)在叠加之前。 ............................................................................................................................................................. 45