我们将重点介绍 KPFM 的基本原理及其在无机纳米结构和纳米材料中的应用,例如碳纳米管 (CNT)、石墨烯、纳米晶体、Si 基纳米器件等。我们将回顾用于电测量的开尔文探针法的物理背景,然后重点介绍两种 KPFM 方法:一种称为幅度调制 KPFM (AM-KPFM),另一种称为频率调制 KPFM (FM-KPFM)。我们还将讨论一种特殊的方法,无反馈 KPFM,用于检测高电压。然后,我们将分析如何通过仪器实现上述 KPFM 方法以及影响 KPFM 分辨率、准确度、灵敏度和重复性的因素。最后,我们将讨论 KPFM 在无机纳米结构和纳米材料表征中的应用。我们将主要关注五个 KPFM 应用:表面电荷检测、功函数和掺杂水平研究、电荷转移研究、场效应晶体管和原子分辨率 KPFM。
自从 80 年代发明以来,扫描探针显微镜 (SPM) 在大学和工业界中就非常流行,用于检查许多不同的样本参数。这是将这项技术更贴近操作员的效果。尽管易用性为不需要太多劳动力的测量提供了可能性,但定量分析仍然是市场上扫描探针显微镜的限制。根据纳米计量组的经验,SPM 仍然可以被视为定量检查热、电和机械表面参数的工具。在这项工作中,我们提出了一个 ARMScope 平台作为多功能 SPM 控制器,它被证明可用于各种应用:从原子分辨率 STM(扫描隧道显微镜)到多共振 KPFM(开尔文探针力显微镜)到商用 SEM(扫描电子显微镜)。
在可极化的材料中,电子电荷载体与周围离子相互作用,从而导致准粒子行为。所产生的极性子在许多材料特性中起着核心作用,包括电运,光,表面反应性和磁敏感,以及极性通过这些宏观特征进行间接研究。在这里,非接触原子力显微镜(NC-AFM)用于在单一准粒子极限下以Fe 2 O 3的形式图像极性图像。Kelvin探针力显微镜(KPFM)和动力学蒙特卡洛(KMC)模拟的组合表明,可以通过Ti掺杂来显着增加电子极性的迁移率。密度功能理论(DFT)计算表明,从极化自由载体状态从极化自由载体状态的过渡可以在电子极性迁移中起关键作用。相比之下,孔极化物的流动性明显较小,并且通过捕获中心进一步阻碍了它们的跳跃。
储能装置中使用的电极材料在循环过程中会发生结构和化学变化,这会影响装置的长期稳定性。然而,这些变化发生在电极表面的背后现象仍不清楚。在这里,我们通过多方面的方法研究了二维 (2D) 超级电容器电极在循环过程中的演变。我们提出了一种新方法来监测循环二维二硫化钨 (WS 2 ) 基电极引起的应变,通过使用开尔文探针力显微镜 (KPFM) 绘制不同电化学循环间隔下的电极功函数。为了支持我们的研究,使用拉曼光谱评估了二维 WS 2 基电极在重复循环过程中的演变。结果表明,在循环过程中,由于电解质离子的嵌入/脱嵌,WS 2 层中会产生应变。结果,可用的电化学活性位点增加,从而导致电容增加。这种新方法能够了解电极随循环寿命的演变,并有望有利于开发更高效、更持久的储能设备。
摘要:在这项工作中,结合了块共聚物光刻和超低能离子植入,以获得高浓度的磷原子的纳米伏算,该磷原子在P型硅底物中定期处置在宏观区域上。高剂量的植入掺杂剂会授予硅底物的局部非晶化。在这种情况下,磷磷通过植入区域的固相外延再生(SPER)激活,并具有相对较低的温度热处理,以防止磷原子扩散并保留其空间定位。在此过程中,监测样品(AFM,SEM),硅底物(UV拉曼)的结晶度以及磷原子的位置(STEMEDX,TOF-SIMS)的位置。静电势(KPFM)和掺杂剂激活时样品表面的电导率(C-AFM)图与模拟的I-V特性兼容,这表明存在一个不理想的阵列,但工作p-n纳米结构。所提出的方法为进一步研究的可能性铺平了道路,该方法通过改变自组装的BCP膜的特征性维度来调节纳米级硅底物内的掺杂剂分布。关键字:块共聚物,离子植入,掺杂,硅,PS-B-PMMA■简介
第一代和第三代之间有了显著的改善,在保持功率效率的同时降低了制造成本。[2] 最近,高效低成本的混合有机-无机卤化物钙钛矿材料已经成为新一代光伏电池最有前途的光吸收剂,取代了商业上占主导地位的多晶硅材料。[3–8] 在 2012 年展示固态钙钛矿太阳能电池 (PSC) 之后 [9],对 PSC 的研究量大幅增加。因此,PSC 的功率转换效率迅速发展,目前已超过 25%,超过了 Cu(In,Ga)Se 2 (CIGS) 和碲化镉 (CdTe),接近单晶硅太阳能电池。[10] 尽管 PSC 具有很高的功率效率,但由于其稳定性低和可扩展性差,距离商业化还有很长的路要走。 [11,12] 在提高 PSC 效率的同时,研究人员还在尝试增强器件稳定性和开发大面积兼容的制造方法。 [13,14] 尽管做出了这些努力,但最先进的 PSC 在加速测试条件下只能保持几千小时的性能,相当于一年或更短的典型运行时间,[15–17] 而商业化至少需要 20 年的稳定性。 同时,PSC 模块的面积相对较小(800–6500 cm 2 ),仅表现出 16% 的能量转换效率 (PCE),而商业化的硅太阳能电池在大模块尺寸(> 14 000 cm 2 )下可实现超过 22% 的 PCE。 [18] 为确保长期稳定性和可扩展性,需要对钙钛矿材料进行准确表征。为了了解钙钛矿材料效率高、降解机制差、可扩展性差的根本原因,对吸收层和器件进行了广泛的表征。[19–22] 图 1 总结了常用于评估钙钛矿化学、形态、结构、光电特性的表征工具,表 1 总结了它们的分辨率极限。在化学范围内,钙钛矿材料的电子能带结构和化学组成已通过各种光谱学和测量方法阐明,包括紫外-可见光谱 (UV-vis)、紫外光电子能谱 (UPS)、开尔文探针强制显微镜 (KPFM)、X 射线光电子
第一代和第三代之间有了显著的改善,在保持功率效率的同时降低了制造成本。[2] 最近,高效低成本的混合有机-无机卤化物钙钛矿材料已经成为新一代光伏电池最有前途的光吸收剂,取代了商业上占主导地位的多晶硅材料。[3–8] 在 2012 年展示固态钙钛矿太阳能电池 (PSC) 之后 [9],对 PSC 的研究量大幅增加。因此,PSC 的功率转换效率迅速发展,目前已超过 25%,超过了 Cu(In,Ga)Se 2 (CIGS) 和碲化镉 (CdTe),接近单晶硅太阳能电池。[10] 尽管 PSC 具有很高的功率效率,但由于其稳定性低和可扩展性差,距离商业化还有很长的路要走。 [11,12] 在提高 PSC 效率的同时,研究人员还在尝试增强器件稳定性和开发大面积兼容的制造方法。 [13,14] 尽管做出了这些努力,但最先进的 PSC 在加速测试条件下只能保持几千小时的性能,相当于一年或更短的典型运行时间,[15–17] 而商业化至少需要 20 年的稳定性。 同时,PSC 模块的面积相对较小(800–6500 cm 2 ),仅表现出 16% 的能量转换效率 (PCE),而商业化的硅太阳能电池在大模块尺寸(> 14 000 cm 2 )下可实现超过 22% 的 PCE。 [18] 为确保长期稳定性和可扩展性,需要对钙钛矿材料进行准确表征。为了了解钙钛矿材料效率高、降解机制差、可扩展性差的根本原因,对吸收层和器件进行了广泛的表征。[19–22] 图 1 总结了常用于评估钙钛矿化学、形态、结构、光电特性的表征工具,表 1 总结了它们的分辨率极限。在化学范围内,钙钛矿材料的电子能带结构和化学组成已通过各种光谱学和测量方法阐明,包括紫外-可见光谱 (UV-vis)、紫外光电子能谱 (UPS)、开尔文探针强制显微镜 (KPFM)、X 射线光电子
第一代和第三代之间有了显著的改善,在保持功率效率的同时降低了制造成本。[2] 最近,高效低成本的混合有机-无机卤化物钙钛矿材料已经成为新一代光伏电池最有前途的光吸收剂,取代了商业上占主导地位的多晶硅材料。[3–8] 在 2012 年展示固态钙钛矿太阳能电池 (PSC) 之后 [9],对 PSC 的研究量大幅增加。因此,PSC 的功率转换效率迅速发展,目前已超过 25%,超过了 Cu(In,Ga)Se 2 (CIGS) 和碲化镉 (CdTe),接近单晶硅太阳能电池。[10] 尽管 PSC 具有很高的功率效率,但由于其稳定性低和可扩展性差,距离商业化还有很长的路要走。 [11,12] 在提高 PSC 效率的同时,研究人员还在尝试增强器件稳定性和开发大面积兼容的制造方法。 [13,14] 尽管做出了这些努力,但最先进的 PSC 在加速测试条件下只能保持几千小时的性能,相当于一年或更短的典型运行时间,[15–17] 而商业化至少需要 20 年的稳定性。 同时,PSC 模块的面积相对较小(800–6500 cm 2 ),仅表现出 16% 的能量转换效率 (PCE),而商业化的硅太阳能电池在大模块尺寸(> 14 000 cm 2 )下可实现超过 22% 的 PCE。 [18] 为确保长期稳定性和可扩展性,需要对钙钛矿材料进行准确表征。为了了解钙钛矿材料效率高、降解机制差、可扩展性差的根本原因,对吸收层和器件进行了广泛的表征。[19–22] 图 1 总结了常用于评估钙钛矿化学、形态、结构、光电特性的表征工具,表 1 总结了它们的分辨率极限。在化学范围内,钙钛矿材料的电子能带结构和化学组成已通过各种光谱学和测量方法阐明,包括紫外-可见光谱 (UV-vis)、紫外光电子能谱 (UPS)、开尔文探针强制显微镜 (KPFM)、X 射线光电子