精准表观基因组编辑作为一种在不改变遗传信息的情况下调节基因表达的方法,已引起广泛关注。然而,一个主要的限制因素是基因表达变化往往是暂时的,不像自然界中经常发生的终生表观遗传变化。在这里,我们系统地探究了基于 CRISPR / dCas9 的表观基因组编辑器 (Epi-dCas9) 设计持久表观遗传沉默的能力。我们阐明了有助于表观遗传重编程差异稳定性的顺式调控特征,例如活跃转录组蛋白标记 H3K36me3 和 H3K27ac 分别与对短期抑制的抵抗力和对长期沉默的抵抗力密切相关。H3K27ac 与 DNA 甲基化的增加呈负相关。有趣的是,仅当使用 KRAB-dCas9 和可靶向 DNA 甲基转移酶 (DNMT3A-dCas9 + DNMT3L) 组合时才观察到对 H3K27ac 的依赖,而当用可靶向 H3K27 组蛋白甲基转移酶 Ezh2 替换 KRAB 时则未观察到。此外,可编程 Ezh2 / DNMT3A + L 处理显示出增强的局部 DNA 甲基化工程,并且对不同的染色质状态不敏感。我们的结果强调了局部染色质特征对于可编程沉默的遗传性的重要性以及对基于 KRAB 和 Ezh2 的表观遗传编辑平台的差异响应。本研究获得的信息为理解上下文线索以更可预测地设计持久沉默提供了基本见解。
精准表观基因组编辑作为一种在不改变遗传信息的情况下调节基因表达的方法,已引起广泛关注。然而,一个主要的限制因素是基因表达变化往往是暂时的,不像自然界中经常发生的终生表观遗传变化。在这里,我们系统地探究了基于 CRISPR / dCas9 的表观基因组编辑器 (Epi-dCas9) 设计持久表观遗传沉默的能力。我们阐明了有助于表观遗传重编程差异稳定性的顺式调控特征,例如活跃转录组蛋白标记 H3K36me3 和 H3K27ac 分别与对短期抑制的抵抗力和对长期沉默的抵抗力密切相关。H3K27ac 与 DNA 甲基化的增加呈负相关。有趣的是,仅当使用 KRAB-dCas9 和可靶向 DNA 甲基转移酶 (DNMT3A-dCas9 + DNMT3L) 组合时才观察到对 H3K27ac 的依赖,而当用可靶向 H3K27 组蛋白甲基转移酶 Ezh2 替换 KRAB 时则未观察到。此外,可编程 Ezh2 / DNMT3A + L 处理显示出增强的局部 DNA 甲基化工程,并且对不同的染色质状态不敏感。我们的结果强调了局部染色质特征对于可编程沉默的遗传性的重要性以及对基于 KRAB 和 Ezh2 的表观遗传编辑平台的差异响应。本研究获得的信息为理解上下文线索以更可预测地设计持久沉默提供了基本见解。
图 2. DNMT3A 编辑细胞中的基因表达动态表明了一种不同于二进制的记忆形式。A 使用与 dCas9、PhlF 或 rTetR 融合的 KRAB、DNMT3A 或 TET1 作为 DNA 结合域 (DBD) 进行瞬时表观遗传编辑的概述。B 本研究开发的实验系统示意图。报告基因通过位点特异性染色体整合整合到内源性哺乳动物基因座中。哺乳动物组成型启动子 (EF1a) 驱动荧光蛋白 EBFP2 的表达。上游结合位点能够靶向募集表观遗传效应物,这些效应物与 DNA 结合蛋白 rTetR、PhlF 或 dCas9 融合。报告基因两侧是染色质绝缘体,以与其他基因隔离。 C 实验概述描述了瞬时转染到带有报告基因的细胞、基于转染水平的荧光激活细胞分选和时间过程流式细胞术测量。D 根据图 C 中显示的实验时间线,DNMT3A 编辑(DNMT3A-dCas9)报告基因的基因表达动态。显示的是 DNMT3A 编辑细胞的单细胞流式细胞术测量(EBFP2)。DNMT3A-dCas9 靶向启动子上游的 5 个靶位点,并使用乱序 gRNA 靶序列作为对照(图 SE.2 A、B、表 S3)。黄色阴影表示检测到转染标记的时间。显示的数据来自 3 个独立重复的代表性重复。E 转染 DNMT3A-dCas9 和细胞分选后 14 天进行 MeDIP-qPCR 和 ChIP-qPCR 分析,以获得高水平的转染。分析了启动子区域(表 S4 和方法)。显示的数据来自三个独立的重复。报告的是使用标准 ∆∆ C t 方法相对于活性状态的倍数变化及其平均值。误差线是平均值的标准差。DNMT3A-dCas9 靶向启动子 (gRNA) 上游的 5 个靶位点。使用乱序的 gRNA 靶序列 (gRNA NT) 作为对照。* P <0.05,** P <0.01,*** P <0.001,非配对双尾 t 检验。F 根据图 C 中显示的实验时间线的 KRAB 编辑 (PhlF-KRAB) 基因表达动态。显示的是单个细胞的报告基因 (EBFP2) 的流式细胞术测量值。黄色阴影区域表示在未应用 DAPG 期间检测到转染标记的时间。从第 6 天开始,在 PhlF-KRAB 和 PhlF 条件下应用 DAPG。每天测量不同的独立重复。显示的数据来自 3 个独立重复。G 转染 PhlF-KRAB 和高水平转染细胞分选后 6 天的 MeDIP-qPCR 和 ChIP-qPCR 分析。分析的是启动子区域。数据来自三个独立重复。显示的是相对于活性状态的标准 ∆∆ C t 方法确定的倍数变化及其平均值。误差线是平均值的标准差。* P <0.05,** P <0.01,*** P <0.001,非配对双尾 t 检验。H 当 KRAB = 0、TET1 = 0 时获得的染色质修饰回路。参见 SI 图 SM.1 C。I 上图:(CpGme, X) 对的剂量反应曲线。下图:DNMT3A 脉冲强度与 DNA 甲基化等级 (CpGme) 之间的剂量反应曲线。脉冲强度通过增加其高度来增加。参见 SI 图 SM.1 D 和 SM.3。J 系统基因表达的平稳概率分布,由 SI 表 SM.1 和 SM.4 中列出的反应表示,参数值在 SI 第 S.9.3 节中给出。K 系统在 t = 28 天后的基因表达概率分布,如图 J 所示,参数值和初始条件在 SI 第 S.9.4 节中给出。参见 SI 图 SM.1 B 和 SM.2。在图 I 和 J 中,DNMT3A 动力学被建模为随时间呈指数下降的脉冲(参见第 S.1.1 节 - SI 方程 (SM.7))。在我们的模型中,ε (ζ) 是衡量基础(招募)擦除率与每次修饰的自催化率之间比率的参数。参见 SI 图 SM.1 E 和 SM.3。
(LOF)帕金森氏病(PD)的变体。通过整合全外观测序数据和功能证据,Jansen等人。建议ZnF543基因的LOF变体是PD的候选者。他们表明,击倒Znf543基因可以减少每个细胞的线粒体数,表明该变体在PD病理学中的作用(Nalls等人。2019; Jansen等。2017)。Znf543是一种含有KRAB结构域的锌指蛋白,该蛋白是转录抑制域(Ecco,Imbeault和Trono 2017)。到目前为止,尚无证据表明ZnF543在PD中的功能,其突变引起的机制尚未阐明。鉴于TRIM28在线粒体功能障碍中的作用和PD中线粒体生物发生水平降低,以及其与Znf543基因相同的位置
摘要虽然对基因-增强子相互作用的调控进行了深入研究,但其应用仍然有限。在这里,我们重建了 CTCF 结合位点阵列,并设计了一种带有 tetO 的合成拓扑绝缘体用于染色质工程 (STITCH)。通过将 STITCH 与连接到 KRAB 结构域的 tetR 偶联以诱导异染色质并禁用绝缘,我们开发了一种药物诱导系统来控制增强子对基因的激活。在人类诱导多能干细胞中,插入 MYC 和增强子之间的 STITCH 下调了 MYC。STITCH 的进行性诱变导致基因-增强子相互作用的优先升级,证实了 STITCH 的强大绝缘能力。STITCH 还改变了 MYC 周围的表观遗传状态。通过药物诱导的时间过程分析发现,H3K27me3 抑制标记的沉积和去除跟随并反映表达变化,但不先于表达变化并决定表达变化。最后,插入 NEUROG2 附近的 STITCH 会削弱分化神经祖细胞中的基因激活。因此,STITCH 应该可以广泛应用于功能遗传学研究。
转录效应子是已知激活或抑制基因表达的蛋白质结构域。但是,缺乏对哪种效应域调节转录的系统性理解。在这里,我们开发了DCAS9介导的高通量募集(HT-RECRUIT),这是一种合并的筛选方法,用于量化内源性靶基因的效应子功能和测试效应子功能,用于包含各种环境的5,092个库中的库。我们还使用较大的文库瓷砖调节剂和转录因子来绘制从未注释的蛋白质区域绘制的效应子的上下文依赖性。我们发现许多效应子取决于目标和DBD上下文,例如可以充当激活因子或阻遏物的HLH域。为了实现有效的扰动,我们选择了包括ZNF705 KRAB在内的上下文固定域,从而改善了CRISPRI工具以使启动子和增强子保持沉默。我们通过结合NCOA3,FOXO3和ZnF473结构域来设计一种称为NFZ的紧凑型人类激活剂,该结构域可以通过更好的病毒递送和对嵌合抗原受体T细胞的诱导控制有效的CRISPRA。
结果:为了应对这些挑战,我们设计了一种紧凑的无酶表观遗传编辑器,称为 CHARM(偶联组蛋白尾,用于甲基转移酶的自抑制释放)。通过与组蛋白 H3 尾和非催化性 Dnmt3l 结构域直接融合,CHARM 能够募集和激活细胞内源性表达的 DNA 甲基转移酶,以甲基化靶基因。CHARM 可以独立于 KRAB 转录抑制结构域发挥作用,并与多种 DNA 结合方式兼容,包括 CRISPR-Cas、转录激活因子样效应物和锌指蛋白。锌指蛋白体积小,最多可容纳三个 DNA 靶向元件,并有额外的空间容纳调节元件,以赋予细胞类型特异性。当与靶向锌指结构域的朊病毒蛋白结合并通过 AAV 递送到小鼠大脑时,CHARM 会甲基化朊病毒基因启动子,并使全脑神经元朊病毒蛋白减少高达 80%,远远超过治疗效果所需的最低减少量。此外,我们开发了自我沉默 CHARM,它们在沉默靶标后会自主停用。这种方法暂时限制了 CHARM 表达,以避免因非分裂神经元中的慢性表达而导致的潜在抗原性和脱靶活性。
鉴于Z-DNA的作用,鉴于其染色性质仍然具有挑战性。在这里,我们对在实验鉴定的Z-DNA形成序列(Z-lipons)上训练的DNABERT变形金刚算法进行全基因组审查。该算法对现有方法产生了较大的性能增强(F1 = 0.83),并实现了计算诱变,以实现基础替代对Z-DNA形成的影响。我们表明Z- iPons富含启动子和端粒,过度扎根定量性状基因座,用于RNA表达,RNA编辑,剪接和与疾病相关的变体。我们在许多正交数据库和定义的junction基序中进行了跨估算。令人惊讶的是,我们描述的许多效果可能是通过Z-RNA形成介导的。在Scarf2,Smad1和Cacna1转录本中鉴定了共享的Z-RNA图案,而非编码RNA中存在其他基序。我们为Z-RNA折叠提供了证据,该折叠通过替代krab域锌纤维蛋白的剪接来促进适应性免疫。对OMIM和推定的GNOMAD功能丧失数据集的分析表明,Z流iPon的重叠在8.6%和2.9%的Mendelian病基因中,Mendelian疾病基因的重叠,大大扩展了映射到Z- iPons的表型的范围。
转座因子 (TE) 占人类基因组的 50% 以上,许多转座因子在整个进化过程中被用来为基因表达网络提供调控功能。多种证据表明,这些网络由最大的 TE 控制家族——含 KRAB 的锌指蛋白 (KZFP) 进行微调。允许 TE 转录激活(称为“转转录”)的组织之一是成年人脑,但缺乏关于这一过程的程度及其对人脑发育的潜在贡献的全面研究。为了阐明发育中人脑的时空转转录组,我们分析了两个独立的 RNA 序列数据集,涵盖从受孕后八周到成年的 16 个大脑区域。我们揭示了独特的 KZFP:TE 转录谱,它定义了从产前晚期到产后早期的过渡,以及驱动神经发生相关基因表达的 TE 衍生的替代启动子的时空和细胞类型特异性激活。长读测序证实了这些 TE 驱动的异构体是神经源性转录本的重要贡献者。我们还通过实验表明,一个被选择的反义 L2 元素驱动时间蛋白从内质网中重新定位,这暗示了灵长类动物进化中存在新的 TE 依赖性蛋白功能。这项工作突出了时空 KZFP:TE 转录组的广泛动态性质及其在 TE 介导的基因组创新和神经典型人类大脑发育中的重要性。为了促进对这些时空基因和 TE 表达动态的交互式探索,我们提供了“Brain TExplorer”网络应用程序,供社区免费使用。
图2。DNMT3A募集后的基因表达动力学与数字记忆不一致。使用特定于特定于染色体的染色体整合的169个报告基因基因的示意图。哺乳动物170构成启动子(EF1A)驱动荧光蛋白EBFP2的表达。上游结合位点可实现靶向171的表观遗传效应子,该效应子与DNA结合蛋白RTETR融合在一起,PHLF或DCAS9。报告基因是由染色质绝缘子与其他基因分离出来的172。b实验概述,描述了瞬时转染到具有报告基因的173个细胞,基于转染水平的荧光激活的细胞分选,以及时间顺序的流量细胞仪174测量。根据面板中所示的175个实验时间表。显示的是四种不同水平的转染水平的报告基因176(EBFP2)的流量细胞仪测量值的分布。DNMT3A-DCAS9靶向启动子上游的5个目标位点,177用作炒GRNA目标序列作为对照(图se.2 a,b,表S3)。显示的数据来自来自3个独立重复的代表性178重复。d使用DNMT3A-179的流量细胞仪的单细胞基因表达测量值对应于面板C中所示的细胞(30天)。父母是指带有180个报告基因的未转染细胞。数据来自3个独立重复的代表性重复。平均值。e MedIP-QPCR和ChIP-QPCR 181分析DNMT3A-DCAS9和细胞分类后14天分析高水平的转染。分析了启动子区域182。显示的数据来自三个独立的重复。报道的是折叠变化及其平均值,使用183标准∆ ∆ c t方法相对于活性状态。错误条为S.D.DNMT3A-DCAS9的靶向位置为184至5个目标位点(GRNA)。使用炒GRNA目标序列(GRNA NT)作为对照。185 *p≤0.05,**p≤0.01,***p≤0.001,未配对的两尾t检验。根据面板中所示的实验时间线,krab抑制的基因表达动力学(PHLF-KRAB)186。所示是从四种不同水平的转染水平的187个报告基因基因(EBFP2)的流量细胞仪测量值的分布。每天测量一个独立的重复。显示的数据188来自3个独立重复。g重新激活细胞的百分比(400-10 5基因表达A.U.F.)对应于F. h Medip-QPCR面板中显示的189个细胞种群和CHIP-QPCR分析后6天对PHLF-KRAB和Cell 190排序进行了高水平的转染。分析是启动子区域的。数据来自三个独立的重复。191显示的是折叠变化,其平均值由标准∆ΔCT方法确定相对于活性状态。错误192条是S.D.平均值。p≤0.05,**p≤0.01,***p≤0.001,未配对的两尾t检验。参见SI图参见Si无花果。202i简化染色质修饰193当krab = 0,dnmt3a = 0,tet1 = 0时获得的电路图,而H3K9me3并未介导从头催化194 DNA甲基化的催化。SM.1 C. J顶图:(CPGME,H3K4ME3)对的剂量响应曲线。底部图:(DNMT3A,CPGME)对的剂量-195响应曲线。SM.1 D和SM.3。 k k的基因表达的概率分布196的系统,该系统由Si Tape Sm.1和Sm.3中列出的反应表示。 参见Si无花果。 SM.1 B和SM.2。 l概率197在t = 28天后的基因表达分布,如面板I所述获得。 在小组j和l中,将198 DNMT3A动力学建模为脉冲,随着时间的流逝会呈指数减小。 在我们的模型中,α'是通过抑制组蛋白修饰的DNA甲基化建立的归一化速率199,DNA甲基化擦除率200速率与激活组蛋白的擦除速率和激活的组蛋白修改速率之间的µ'是每个基准级别(ε')的级别(均为基础率(均))(招募)(招募)(招募)。修改。 参见SI图 SM.1 E和SM.3。SM.1 D和SM.3。k k的基因表达的概率分布196的系统,该系统由Si Tape Sm.1和Sm.3中列出的反应表示。参见Si无花果。SM.1 B和SM.2。 l概率197在t = 28天后的基因表达分布,如面板I所述获得。SM.1 B和SM.2。l概率197在t = 28天后的基因表达分布,如面板I所述获得。在小组j和l中,将198 DNMT3A动力学建模为脉冲,随着时间的流逝会呈指数减小。在我们的模型中,α'是通过抑制组蛋白修饰的DNA甲基化建立的归一化速率199,DNA甲基化擦除率200速率与激活组蛋白的擦除速率和激活的组蛋白修改速率之间的µ'是每个基准级别(ε')的级别(均为基础率(均))(招募)(招募)(招募)。修改。参见SI图SM.1 E和SM.3。SM.1 E和SM.3。