2019 年,荷兰埃因霍温理工大学开发了一种隧道二极管,允许输入 2.4 GHz 的 −25 至 −10 dBm 微波功率,与传统 SBD 相比,隧道二极管具有更高的 RF-DC 转换效率。使用由卡诺极限确定的高阻抗(Q 匹配电路)天线也可以获得高 RF-DC 转换效率。利物浦大学开发了一种阻抗 >400- Ω 的低功率宽带整流天线,它在 0.9-1.1 GHz 和 1.8-2.5 GHz 之间实现了 75% 的 RF-DC 转换效率。 2016 年,日本金泽工业大学设计了一种 1.6k 高阻抗整流天线,用于收集 500MHz 的数字电视信号,在 -15dBm 的 RF 功率输入下可获得 49% 的 RF-DC 转换效率,在 -30dBm 的输入功率下可获得 8.7% 的效率
a 横滨市立大学认知信息科学实验室,日本横滨市金泽区濑户 22-2 b 日本理化学研究所信息系统和网络安全总部计算工程应用部,日本埼玉县和光市广泽 2-1 c 西班牙加泰罗尼亚维多利亚中央大学工程系数据与信号处理研究组,维多利亚 08500 d 英国剑桥大学精神病学系,剑桥 CB2 3EB e 南开大学人工智能学院,天津 300071 f 俄罗斯莫斯科斯科尔科沃科学技术研究所张量网络与深度学习数据挖掘应用实验室 g 日本东京理化学研究所高级智能项目中心张量学习团队 h 阿里巴巴集团阿里巴巴量子实验室,北京 100102 i 三峡大学经济管理学院,宜昌
金泽大学自然科学与技术研究生院,日本金泽 920-1192 (tfuruyama@se.kanazawa-u.ac.jp) 酞菁 (Pcs) 和相关大环化合物 (azaporphyrinoids) 是现代材料化学中众所周知的人工染料。迄今为止,已提出了几种对其光学/电化学/芳香性质进行微调的策略。有机合成提供了各种各样的有机分子。Pcs 的多样性提供了新颖的功能,这是创新科学的源泉。我们小组专注于 Pcs 的化学合成,包括“生产新型 Pcs 的受控反应”和“使用 Pcs 的受控反应”。本讲座将讨论 Pc 化学中受控反应的最新成果。五价磷 (P(V)) 的高电负性和高价态有望改变 Pcs 的光谱性质。我们开辟了一种合成策略来制备 (aza) 卟啉 P(V) 复合物。这些配合物由于与外围取代基的结合而具有独特的物理性质 [1]。最近,Si(IV) Pcs 与其轴向配体之间的协同效应也被发现。吸收近红外 (NIR) 的亲水性 Si(IV) Pcs 在近红外光照射 (810 nm) 下表现出高效的光动力学活性 [2]。Pcs 的化学选择性合成是一个重要的课题,但尚未引起太多关注。我们提出了一种新颖的 Pb 介导合成方法,通过该方法合成了带有吸电子基团的 Pcs 材料。这些材料可产生高水平的单线态氧并表现出高光稳定性 [3–4]。在研究 Pc 衍生物的过程中,我们成功合成了一种新型球形金属配合物,它可以吸收近红外区域的光。各种 Pc 前体都用于合成对称和低对称性配合物。结论是,谱带位置和氧化还原电位可以独立调节 [5–6]。Pcs 的精细可调性使得开发一种利用远红光到近红外光的新转化方法成为可能。我们开发了几种用于有机分子转化的近红外催化剂。这些反应进一步表现出对蓝光到绿光吸收功能材料的化学选择性,即使在屏蔽条件下也具有高反应活性 [7–8]。总之,我们小组进行了广泛的基于 Pc 的研究,包括开发 Pcs 生产的合成方法及其受控反应。这些成就为近红外光的灵活应用创造了更多机会。
a 日本京都大学医学院皮肤科 b 日本京都大学医学院儿科 c 日本京都大学医学院血液科 d 日本京都大学医学院风湿病和临床免疫学系 e 日本京都大学医学院生物医学统计学和生物信息学系 f 日本高知大学高知医学院皮肤科 g 日本中央区山梨大学医学院皮肤科 h 日本大阪红十字大阪医院皮肤科 i 日本越谷独协医科大学埼玉医疗中心皮肤科 j 日本尾道市 JA 广岛高中联尾道综合医院皮肤科诊所 k 日本赞岐市立赞岐医院内科 l 鹿儿岛大学医学院皮肤科日本鹿儿岛牙科学院 m 日本川崎圣玛丽安娜大学医学院皮肤病学系 n 日本福岛福岛医科大学医学院风湿病学系 o 日本京都府立医学院医学系血液学和肿瘤学分部 p 日本仓敷川崎医学院风湿病学系 q 日本仓敷川崎医学院免疫学和分子遗传学系 r 日本神户市立医疗中心综合医院皮肤病学系 s 日本金泽大学医学院风湿病学系 t 日本伊丹市立医院诊断病理学系 u 日本东京医科大学皮肤病学系 v 日本名古屋市立大学医学院老年和环境皮肤病学系 w 日本名古屋研究生院皮肤病学系日本广岛大学生物医学与健康科学学院 x 日本广岛市民医院皮肤科 y 日本所泽国防医学院皮肤科 z 日本东京慈惠大学医学院皮肤科 aa 日本西宫兵库医科大学皮肤科
2024.12.01 AAPPS-DPP董事会在过去的7年中,亚太物理社会协会(AAPPS-DPP)的血浆物理学划分(AAPPS-DPP)已成功组织了关于亚太地区血浆物理学的年度会议。2017年9月18日至23日在中国成都(http://aappsdpp.org/dpp.org/dpp2017rogmlatest/index.html)举行了1个St-Asia-Pacific会议(AAPPS-DPP2017)(AAPPS-DPP2017)(AAPPS-DPP2017) http://aappsdpp.org/dpp2018/index.html)和aapps-dpp2019在2019年11月4日至8日在中国Hefei(http://aappsdpp.org/dpp/dpp2019/index.html)。随后的三个会议aapps-dpp2020(http://aappsdpp.org/dpp20202020/index.html),aapps-dpp2021(http://aappsdpp.org/dpp.org/dpp.org/dpp2021/index.htex.htex.html)和aapps-dpps-dpps20222( http://aappsdpp.org/dpp2022/index.html)使用Zoom平台作为在线会议举行。我们返回了第7届亚太等离子物理学会议(AAPPS-DPP2023)的面对面格式,该会议于2023年11月12日至17日在日本的Messe Nagoya港(https://wwwwww.aappsdpp.orgg/dpp/dpp20233/index.html)举行。第8届亚太等离子体物理学会议(AAPPS-DPP2024)在2024年11月3-8日在马来西亚马六甲的大瑞士 - 贝尔酒店举行,由马来西亚物理研究所(MIP)共同组织(MIP)(https:///wwwwwwwwwwwww..aappsdpp.org/dpppppy2024/index2024/index2024/index。第9届亚太等离子物理学会议(AAPPS-DPP2025)将在日本福冈举行。
计划2025/1/24星期五。 09:20-09:45注册09:45-09:50开幕式09:50-10:50 [il] Toshiyuki Nakagaki(北海道大学)“重塑了由负载诱导的局部增长速率驱动的生物形态 “Practical guidelines for using spatial correlation functions to understand the collective motion of living matter” 11:20 - 11:40 Isabelle Shiiba (Kyoto University) “The Role of DNA Hybridization as a Control for Self-Assembling Active Cytoskeleton Proteins” 11:40 - 12:40 Lunch 12:40 - 13:00 Susumu Ito (Tohoku University) “Selective decision making and collective motion of fish by visual attention” 13:00 - 13:20 Takahiro Kanazawa (The University of Tokyo) “Locomotion on a lubricating fluid with spatial viscosity variations” 13:20 - 13:40 Simon Schnyder (The University of Tokyo) “Nash Epidemics” 13:40 - 13:50 Break 13:50 - 14:10 Mitsusuke Tarama (Kyushu University) “Interaction between同步电梯” 14:10-14:30 Riccardo Muolo(东京科学学院)“高阶互动障碍障碍同步:对三体kuramoto模型的数据驱动分析” 14:30-14:50 John Molina(Kyoto University)(Kyoto Universion 17:00休息17:00-18:00 [IL] Yasumasa Nishiura(北海道大学)“高索引鞍座和隐藏的奇异性” 18:20-20:30:30社交会议
参考文献 1. Marchioni D、Alicandri‐Ciufelli M、Molteni G、Artioli FL、Genovese E、Presutti L。选择性上鼓室通气障碍综合征。喉镜 2010;120:1028-33。[Crossref] 2. Padurariu S、Roosli C、Roge R、Stensballe A、Vyberg M、Huber A 等。关于正常中耳的功能区室化。其粘膜的形态组织学建模参数。听力研究 2019;378:176-84。[Crossref] 3. Ars B、Dirckx J。耳咽管功能。北美耳鼻喉科临床 2016;49:1121-33。 [交叉引用] 4. Alicandri-Ciufelli M、Gioacchini FM、Marchioni D、Genovese E、Monzani D、Presutti L. 乳突:人类的退化功能?医学假设2012; 78:364-6。 [交叉引用] 5. Marchioni D、Grammatica A、Alicandri-Ciufelli M、Aggazzotti-Cavazza E、Genovese E、Presutti L。选择性通气不良对阁楼中耳病理学的贡献。医学假设2011; 77:116-20。 [Crossref] 6. Shirai K、Schachern PA、Schachern MG、Paparella MM、Cureoglu S。慢性中耳炎的鼓室容积和鼓室峡部阻塞:人类颞骨研究。Otol Neurotol 2015;36:254-9。[Crossref] 7. Proctor B。中耳腔的发育及其外科意义。The J Laryngol Otol 1964;78:631-45。[Crossref] 8. Marchioni D、Mattioli F、Alicandri-Ciufelli M、Molteni G、Masoni F、Presutti L。中耳通气通路阻塞的内窥镜评估。Am J Otolaryngol 2010;31:453-66。 [Crossref] 9. Shinnabe A、Hara M、Hasegawa M、Matsuzawa S、Kanazawa H、Kanaza- wa T 等。在超声心动图检查中,松弛部和紧张部胆脂瘤在中耳通气障碍方面的差异以及鼓室和乳突气化的模式。耳鼻喉科 2012;33:765-8。[Crossref] 10. Marchioni D、Molteni G、Presutti L。内窥镜中耳解剖学
摘要:自动驾驶汽车有可能显着改善运输方式,许多企业和研究设施正在开发此类系统。尽管有关于自动驾驶汽车的社会实施的研究,但这些研究基于有限的条件,例如预定的驾驶环境。因此,在这项研究中,我们针对城市地区和农村地区,并模拟了卡纳泽大学开发和拥有的自动驾驶汽车的行为算法。在这项研究中,使用当地政府进行的人群调查的数据,建造了一个交通流量模拟系统(AIMSUN),以在正常时期重现该城市的当前交通流量。此外,我们改变了自动车辆的混合速率,并评估了其对OD之间延迟时间的影响。我们假设在实际的道路网络上逐渐替换了由自动驾驶汽车逐步替换现有的车辆,并且我们研究了它们对交通流量的影响。我们将自动驾驶汽车的混合速率改变为实际的交通环境,我们测量了原点污染(OD)间隔的延迟,以评估自动驾驶汽车对交通流量的影响。获得的结果表明,随着自动驾驶汽车的混合速率增加,OD间隔之间的延迟增加。然后,一旦混合速率超过一定值,OD间隔之间的延迟逐渐下降。随着自动驾驶汽车的混合速率从10增加到45%,所有车辆的延迟时间略有增加。当混合速率从45%增加到50%时,所有车辆的延迟时间都会降低,当混合速率为50至100%时,它保持恒定。分析结果表明,当社会实施自动驾驶汽车时,它们的混合速率会影响交通流量。因此,有必要确定适当的分发方案和实施领域。
a 伦敦玛丽女王大学电子工程与计算机科学学院,英国伦敦 b 天津大学应用数学中心,中国天津 c Raygun 性能监测,新西兰惠灵顿 d 约克大学计算机科学系和约克量子技术中心,英国约克 e 微软,荷兰史基浦机场 f 维也纳科技大学分布式系统组,奥地利维也纳 g Detecon International GmbH,德国慕尼黑 h 剑桥大学工程系制造研究所,英国剑桥 i 牛津大学工程科学系牛津电子研究中心 (OeRC),英国牛津 j 西安大略大学计算机科学系,加拿大伦敦 k 卢布尔雅那大学计算机与信息科学学院,斯洛文尼亚卢布尔雅那 l 金泽大学科学与工程研究所,日本 m 纳瓦拉大学 Tecnun 工程学院,西班牙 n 卡塔尔大学工程学院计算机科学与工程系,卡塔尔多哈 o 贝内特大学,印度大诺伊达 p 机器智能研究实验室,美国华盛顿州奥本 q 印度理工学院计算机科学与工程系,印度克勒格布尔 r 马里兰大学巴尔的摩分校 (UMBC) 信息系统系,美国巴尔的摩 s 曼彻斯特大学计算机科学系,英国曼彻斯特牛津路 t 卡迪夫大学计算机科学与信息学学院,英国卡迪夫 u 沙特阿拉伯利雅得国王沙特大学计算机与信息科学学院计算机科学系 v 葡萄牙里斯本卢索纳大学 COPELABS w 新南威尔士大学 (UNSW) 计算机科学与工程学院,澳大利亚悉尼 x 墨尔本大学退休教授,澳大利亚维多利亚州 y 墨尔本大学计算机与信息系统学院云计算与分布式系统 (CLOUDS) 实验室,澳大利亚
a 伦敦玛丽女王大学电子工程与计算机科学学院,英国伦敦 b 天津大学应用数学中心,中国天津 c Raygun 性能监测,新西兰惠灵顿 d 约克大学计算机科学系和约克量子技术中心,英国约克 e 微软,荷兰史基浦机场 f 维也纳科技大学分布式系统组,奥地利维也纳 g Detecon International GmbH,德国慕尼黑 h 剑桥大学工程系制造研究所,英国剑桥 i 牛津大学工程科学系牛津电子研究中心 (OeRC),英国牛津 j 西安大略大学计算机科学系,加拿大伦敦 k 卢布尔雅那大学计算机与信息科学学院,斯洛文尼亚卢布尔雅那 l 金泽大学科学与工程研究所,日本 m 纳瓦拉大学 Tecnun 工程学院,西班牙 n 卡塔尔大学工程学院计算机科学与工程系,卡塔尔多哈 o 贝内特大学,印度大诺伊达 p 机器智能研究实验室,美国华盛顿州奥本 q 印度理工学院计算机科学与工程系,印度克勒格布尔 r 马里兰大学巴尔的摩分校 (UMBC) 信息系统系,美国巴尔的摩 s 曼彻斯特大学计算机科学系,英国曼彻斯特牛津路 t 卡迪夫大学计算机科学与信息学学院,英国卡迪夫 u 沙特阿拉伯利雅得国王沙特大学计算机与信息科学学院计算机科学系 v 葡萄牙里斯本卢索纳大学 COPELABS w 新南威尔士大学 (UNSW) 计算机科学与工程学院,澳大利亚悉尼 x 墨尔本大学退休教授,澳大利亚维多利亚州 y 墨尔本大学计算机与信息系统学院云计算与分布式系统 (CLOUDS) 实验室,澳大利亚