我们先前鉴定出含塔林杆域的蛋白1(TLNRD1)是一种有效的肌动蛋白捆绑蛋白的体外。在这里,我们报告了TLNRD1在体内脉管系统中表达。其耗竭会导致体内血管异常和体外内皮细胞单层完整性的调节。我们证明,TLNRD1是通过与CCM2的直接相互作用的脑海绵状畸形(CCM)复合物的组成部分,该复合物是由CCM2中的疏水C-末端螺旋介导的,它附着在TLNRD1的四螺旋域上附着在疏水槽中。这种结合界面的破坏导致细胞核和肌动蛋白纤维中的CCM2和TLNRD1积累。我们的发现表明CCM2控制TLNRD1对细胞质的定位并抑制其肌动蛋白捆绑活性,并且CCM2-TLNRD1相互作用会影响内皮肌动蛋白应激纤维和局灶性粘附形成。基于这些结果,我们提出了一种新的途径,CCM复合物通过该途径调节肌动蛋白细胞骨架和血管完整性。
化石内生物记录了过去的大脑特征:大小,形状,脉管系统和回味。需要这些数据以及实验和比较证据,以解决有关大脑能量,认知专业和发展可塑性的问题。通过将跨学科技术应用于化石记录,paleonalology一直领导着重大创新。神经影像揭示了化石脑组织和行为。可以通过基于古代DNA的脑官和转基因模型对灭绝物种大脑发育和生理的推论进行实验研究。系统发育比较方法将跨物种的数据与表型相关联,并将大脑与行为相关联。同时,化石和考古发现不断贡献新的知识。通过合作,科学界可以加速知识获取。共享数字化的博物馆收藏可以提高稀有化石和文物的可用性。可通过在线数据库以及用于测量和分析的工具可获得比较神经解剖学数据。在这些进步的背景下,paleonalologology记录为将来的研究提供了充足的机会。生物医学和生态学科学可以从古术学的方法以及其新颖的研究管道中受益,从而在神经解剖学,基因和行为之间建立联系。
背景:在动物中广泛实践生发囊泡完整卵母细胞的生发囊泡完整卵母细胞的体外成熟(IVM)。在人类辅助繁殖中,通常保留保存生育能力或禁忌卵巢刺激的地方。标准实践将血清和/或白蛋白形式的复杂蛋白质(CP)纳入IVM培养基中,以模仿卵巢卵泡环境。然而,CP的未固定性质,以及批处理变异和有关其起源的伦理问题,需要开发更明确的表述。卵泡流体的已知成分,褪黑激素具有多方面的作用,包括代谢调节剂和抗氧化剂。在某些情况下,它可以增强卵母细胞的成熟。在发育中,生发剂完整的卵母细胞容易出现非整倍和表观遗传失调。
白粉病是草莓生产中最严重的疾病之一。迄今为止,很少有商业草莓品种被认为具有完全抗性,因此必须实施广泛的喷药计划来控制病原体。在这里,我们进行了一项大规模田间试验,以确定不同草莓基因型的叶片和果实组织的白粉病抗性状况。这些表型数据用于识别与组织特异性白粉病抗性相关的数量性状核苷酸 (QTN)。总共发现六个稳定的 QTN 与叶面抗性有关,其中一个位于 7D 染色体上的 QTN 与抗性增加 61% 相关。与叶片结果相反,没有与果实抗病性相关的 QTN,在草莓果实上观察到高水平的抗性,果实和叶片症状之间没有观察到遗传相关性,表明组织特异性反应。除了识别基因位点之外,我们还证明了基因组选择可以快速提高基因型的叶面抗性,并有可能捕获种群中存在的 50% 以上的遗传叶面抗性。迄今为止,草莓中强抗白粉病的育种一直受到天然抗性的定量性质以及缺乏有关该性状的遗传控制知识的阻碍。这些结果解决了这一不足,为社区提供了可用于基因组知情育种的大量信息,实施该育种可以提供对抗白粉病的天然抗性策略。
通过机器学习生成设计一直是计算机辅助设计领域的一项持续挑战。最近,深度学习方法已被用于随机生成时尚、家具和产品设计中的图像。然而,这种深度生成方法通常需要大量的训练图像,并且在设计过程中没有考虑到人为因素。在这项工作中,我们寻求一种方法,通过脑电图测量 (EEG) 指示的大脑活动将人类认知因素纳入生成过程。我们提出了一种受神经科学启发的机器学习设计方法,其中使用 EEG 来捕获首选的设计特征。此类信号用作生成对抗网络 (GAN) 中的条件。首先,我们使用循环神经网络 (LSTM - 长短期记忆) 作为编码器,从原始 EEG 信号中提取 EEG 特征;这些数据是从受试者观看 ImageNet 中的几类图像时记录下来的。其次,我们训练一个以编码的 EEG 特征为条件的 GAN 模型来生成设计图像。第三,我们使用该模型从受试者的 EEG 测量大脑活动生成设计图像。
摘要 伴随前庭功能障碍的失忆症状表明前庭和视觉记忆系统之间存在功能关系。然而,人们对其背后的认知过程知之甚少。作为起点,我们寻找一种跨模态相互作用的证据,这种相互作用通常在其他感觉模态之间观察到,在这种相互作用中,如果先前将目标(在本例中为视觉)与来自另一个感觉域(在本例中为前庭)的独特、时间上一致的刺激相结合,则更容易识别目标。参与者首先执行视觉检测任务,其中刺激出现在计算机网格内的随机位置。参与者不知道,一种特定刺激的开始伴随着短暂的亚感觉脉冲电前庭刺激 (GVS)。在两个视觉搜索实验中,当在先前检测任务中出现 GVS 配对视觉刺激的网格位置呈现时,旧目标和新目标都能更快地被识别。这种位置优势似乎是基于相对而非绝对空间坐标,因为当搜索网格旋转 90° 时,这种效果仍然有效。这些发现共同表明,当个体回到熟悉的视觉场景(此处为 2D 网格)时,如果目标出现在之前与独特的、与任务无关的前庭线索相关联的位置,则视觉判断会得到促进。这种多感官相互作用的新案例对于理解前庭信号如何影响认知过程具有更广泛的意义,并有助于限制 GVS 日益增长的治疗应用。
背景:SAMHD1 通过切割三磷酸化形式介导对抗癌核苷类似物的耐药性,包括常用于治疗白血病的阿糖胞苷、地西他滨和奈拉滨。因此,SAMHD1 抑制剂是使白血病细胞对基于核苷类似物的疗法敏感的有希望的候选药物。在这里,我们在 SAMHD1 的背景下研究了胞嘧啶类似物 CNDAC 的影响,该物质已被提议作为 SAMHD1 抑制剂。方法:在 13 种急性髓系白血病 (AML) 细胞系、26 种急性淋巴细胞白血病 (ALL) 细胞系、10 种适应各种抗白血病药物的 AML 亚系、24 种单细胞衍生的克隆 AML 亚系和来自 24 名 AML 患者的原发性白血病母细胞中测试了 CNDAC。此外,还建立了 24 个 AML 细胞系 HL-60 和 PL-21 的 CNDAC 抗性亚系。使用 CRISPR/Cas9 破坏 SAMHD1 基因,使用 RNAi 和病毒 Vpx 蛋白耗尽 SAMHD1。通过慢病毒转导实现强制 DCK 表达。用甲基化敏感的 HpaII 内切酶处理基因组 DNA 后,通过 PCR 确定 SAMHD1 启动子甲基化。通过 LC-MS/MS 测定核苷(类似物)三磷酸盐水平。通过酶促测定和结晶分析了 CNDAC 与 SAMHD1 的相互作用。结果:尽管胞嘧啶类似物 CNDAC 预计会抑制 SAMHD1,但 SAMHD1 介导白血病细胞中的内在 CNDAC 抗性。因此,SAMHD1 耗竭会增加 CNDAC 三磷酸盐 (CNDAC-TP) 水平和 CNDAC 毒性。酶促分析和结晶研究证实,CNDAC-TP 是 SAMHD1 底物。在 24 个适应 CNDAC 的急性髓系白血病 (AML) 亚系中,抗药性是由 DCK(催化初始核苷磷酸化)损失引起的。适应 CNDAC 的亚系仅对其他 DCK 底物(例如阿糖胞苷、地西他滨)表现出交叉抗药性。适应不受 DCK 或 SAMHD1 影响的药物的细胞系仍然对 CNDA C 敏感。在适应阿糖胞苷的 AML 细胞中,SAMHD1 增加和 DCK 水平降低导致阿糖胞苷和 CNDAC 抗药性。
对长期意识障碍 (pDOC) 患者提供准确的预后仍然是一个临床挑战。大型横断面研究已经证明了使用高密度脑电图 (hdEEG) 测量的功能性大脑网络的诊断和预后价值。尽管如此,这些神经测量的预后价值尚未通过纵向随访进行评估。我们通过评估 hdEEG 预测长期行为结果的效用来解决这一差距,采用从一组患者中收集的纵向数据,这些患者在两年的时间内通过床边的静息 hdEEG 和昏迷恢复量表修订版 (CRS-R) 进行系统评估。我们使用典型相关分析将临床(包括 CRS-R 评分与人口统计变量相结合)和 hdEEG 变量相互关联。该分析显示,患者的年龄、hdEEG θ 波段功率和 alpha 波段连接对 hdEEG 与临床变量之间的关系贡献最为显著。此外,我们发现,评估时记录的 hdEEG 测量结果增强了临床测量结果,有助于预测下次评估时的 CRS-R 分数。此外,hdEEG 变化率不仅可以预测 CRS-R 分数的后续变化,而且在预测能力方面也优于临床测量结果。总之,这些发现表明,功能性大脑网络的改善先于 pDOC 的行为意识变化。我们在此证明,在专科护理院进行的床边 hdEEG 评估是可行的,具有临床实用性,并且可以补充临床知识和系统性行为评估,以指导预后和护理。
生物经济,即利用生物技术和生物资源为所有经济部门提供信息、产品、流程和服务,是解决各种全球和地方问题的关键。过去几年,全球生物经济战略取得了重大发展:2021 年 10 月,世界生物经济论坛首次由全球南方国家巴西主办,这是一个分享以生物为基础的负责任创新理念以促进循环生物经济的全球平台。论坛结束时,巴西帕拉州州长还推出了巴西首个专门的生物战略(世界生物经济论坛,2021 年)。几个月后,即 2022 年 5 月,中国推出了首个国家生物经济五年计划,目标是将该行业的价值提高到 22 万亿元人民币(3.3 万亿美元)(欧阳,2022 年)。在英国,除了其创新战略和英国基因组实施计划外,其人类受精与胚胎学管理局还继续“为未来做好准备”其立法(DSIT 和 DBEIS,2021 年;生命科学办公室等,2021 年,Devlin,2022 年)。2022 年 9 月,拜登总统签署了《关于推进生物技术和生物制造创新的行政命令》(白宫,2022 年)。2023 年 4 月,印度生物技术部 (DBT) 发布了《2022 年生物经济报告》(BIRAC,2022 年),预计到 2030 年生物经济对 GDP 的贡献将从目前的 2.6% 跃升至近 5%。