1,明尼苏达州明尼阿波利斯大学物理与天文学学院,美国明尼苏达州55455,美国2 Johannes Gutenberg University Mainz Mainz,55128德国Mainz,德国3 Helmholtz-Institute,GSI Helmholtzentrum schwerionenforschung fursich a in Schwerionenforschung fursich aterich atericiaig atericiaig ainy a intericiaig a。加利福尼亚州伯克利94720-7300,美国5物理系,加利福尼亚州立大学 - 东湾,海沃德,加利福尼亚州海沃德市,美国6号,美国6物理系,波士顿大学,波士顿,马萨诸塞州马萨诸塞州02215,美国7,美国72215南安普敦大学的物理与天文学,南安普敦SO117 1BJ,英国10 istituto di fotonica e Nanotecnologiei ifn – cnr,38123 Povo,Trento,Trento,Italy 11 Fondazione Bruno Kessler(FBK),38123 POVO,TRENTOR,TRENTO)材料研究与工程研究所(IMRE),科学,技术与研究机构(A*Star),2 Fusionopolis Way,08-03,新加坡,138634,新加坡共和国(日期:2024年12月20日)
B. 当前和以前的学术职位 2000 年:都灵理工大学固体和结构力学助理教授,自 2000 年 10 月 1 日起。 2005 年:都灵理工大学固体和结构力学副教授,自 2005 年 10 月 1 日起。 2009 年:都灵理工大学生物启发纳米力学实验室“Giuseppe Maria Pugno”的创始人和主任(https://www.diseg.polito.it/il_dipartimento/strutture_interne/centri_e_laboratori/laboratorio_bio_inspir ed_nanomechanics)。 2012 年至今:自 2012 年 11 月 1 日起,担任特伦托大学固体与结构力学教授。 2012 年至今:特伦托大学“生物启发、仿生、纳米、超材料和力学实验室”创始人兼主任(https://pugno.dicam.unitn.it/)。 2013 年至今:自 10 月 1 日起,担任伦敦玛丽女王大学材料科学教授(20% FTE)。 2013 年至今:在石墨烯旗舰项目内负责石墨烯纳米复合材料的设计,先在 Bruno Kessler 基金会,然后在 Edoardi Amaldi 基金会,目前在伦敦玛丽女王大学。 2019 年至今:牛津大学客座教授。
1明尼阿波利斯大学,明尼苏达州明尼苏达州55455,美国2约翰内斯塔省大学25128 Mainz,德国55128 3 Helmholtz-institute,GSI Helmholtzentrum fur Schwerionenforschung intericiaia for Intriciai, ,加利福尼亚州伯克利,94720-7300,美国5加利福尼亚州立大学 - 加利福尼亚州海沃德市东湾94542东湾,美国6,波士顿大学,马萨诸塞州波士顿大学02215,美国波士顿大学02215,美国7 7号电气和计算机工程系马萨诸塞州02215,美国9号物理与天文学学院,南安普敦大学,南安普敦SO117 1BJ,英国10 istituto di fotonica e nanotecnologiei ifn - CNR,CNR,CNR,38123 POVO,38123 POVO,TRENTO,TRENTO,TRENTO,ITALY 11 FONDALYE BRUNOO KESSLO(ITAZIONE BROUNO)123 3812222381238128812881288112388112881128811 pEROSE&3812888812。 A*Star量子创新中心(Q.INC),材料研究与工程研究所(IMRE),
语音运动控制的 DIVA 模型发音器官速度方向 (DIVA) 模型是一个人工神经网络,可定量描述语音运动控制背后的计算(Guenther,1995;Tourville 和 Guenther,2011;E. Golfinopoulos、Tourville 和 Guenther,2010;有关详细说明,请参阅 Guenther,2016)。它包含一个模拟组件网络,这些组件代表负责产生语音的大脑结构。该模型包括一个模仿声道行为的发音合成器,神经网络学习控制合成器发音器官的运动,以产生可理解的语音。我们在此重点关注模型的神经计算和发展过程的更高级别处理,避免使用数学方程和计算机实现细节,以方便处理。为了理解该模型,我们首先将 定义为大脑中具有自己优化的运动程序的“语音块”。这些块可以是音素、音节和/或单词,具体取决于所考虑的年龄和语言经验。根据许多先前的提议(例如,Kozhevnikov & Chistovich,1965;Levelt,1993;MacNeilage & Davis,1990),并得到音素组合分布分析(Sun & Poeppel,2022;Kessler & Treiman,1997)的支持,我们建议
10:30 – 12:00 沙龙 A 会议 5a - 工作负载和系统的分析 会议主席:Antonio Gonzáles (UPC) • 理解性能下降指令的后向片段 Craig Zilles、Gurindar Sohi (威斯康星大学) • 关于存储指令的值局部性 Kevin Lepak、Mikko Lipasti (威斯康星大学) • 基于 Alpha 21264 的 Compaq ES40 系统的性能分析 Zarka Cvetanovic、RE Kessler (康柏电脑公司) 10:30 – 12:00 沙龙 B 会议 5b - 可定制的系统 会议主席:Margaret Martonosi (普林斯顿大学) • Lx:可定制 VLIW 嵌入式处理的技术平台 Paolo Faraboschi、Joseph Fisher、Geoffrey Brown、Giuseppe Desoli (惠普实验室)、Fred Homewood (ST微电子学)• 可重构缓存及其在媒体处理中的应用 Parthasarathy Ranganathan(莱斯大学)、Sarita Adve(伊利诺伊大学)、Norman Jouppi(康柏西部研究实验室)• CHIMAERA:具有紧密耦合的可重构功能单元的高性能架构 Alex Ye、Prithviraj Banerjee、Andreas Moshovos(西北大学)、Scott Hauck(华盛顿大学)
1 1技术创新中心国家市场法规,国家计量学研究所(NIM),北京,100029,中华民国2中,中国吉利安格大学,杭州大学,辛吉安,辛吉安吉安,310018材料科学,国家计量与测试国家实验室(LNE),29 Avenue Roger Hennequin,F-78197,F-78197,法国5号,5个国家测量研究所(NMIA),布拉德菲尔德路36号,新南威尔士州Lindfield,新南威尔士州2070年,澳大利亚2070年,澳大利亚6号研究中心,国民研究委员会(NRC),加拿大研究委员会(NRC)。 0R6, Canada 7 Bruno Kessler Foundation, Sensors and Devices Center, Micro Nano Facility Unit ( MNF ) , Trento I-38123, Italy 8 National Institute of Metrology ( Thailand ) ( NIMT ) , 3 / 4-5 Moo 3, Klong 5, Klong Luang, Pathumthani, Thailand 9 Danmarks Nationale Metrologiinstitut ( DFM ) , Kogle Allé 5 D-2970 Hørsholm Danmark 10 National Institute of Metrology, Quality and Technology ( INMETRO ) , Duque de Caxias RJ, Brazil 11 Center for Measurement Standards, Industrial Technology Research Institute ( CMS / ITRI ) , Hsinchu 30011, Chinese TaiPei, People ' s Republic of China 12 Swinburne University of Technology, John Street, Hawthorn, VIC 3122 Australia1技术创新中心国家市场法规,国家计量学研究所(NIM),北京,100029,中华民国2中,中国吉利安格大学,杭州大学,辛吉安,辛吉安吉安,310018材料科学,国家计量与测试国家实验室(LNE),29 Avenue Roger Hennequin,F-78197,F-78197,法国5号,5个国家测量研究所(NMIA),布拉德菲尔德路36号,新南威尔士州Lindfield,新南威尔士州2070年,澳大利亚2070年,澳大利亚6号研究中心,国民研究委员会(NRC),加拿大研究委员会(NRC)。 0R6, Canada 7 Bruno Kessler Foundation, Sensors and Devices Center, Micro Nano Facility Unit ( MNF ) , Trento I-38123, Italy 8 National Institute of Metrology ( Thailand ) ( NIMT ) , 3 / 4-5 Moo 3, Klong 5, Klong Luang, Pathumthani, Thailand 9 Danmarks Nationale Metrologiinstitut ( DFM ) , Kogle Allé 5 D-2970 Hørsholm Danmark 10 National Institute of Metrology, Quality and Technology ( INMETRO ) , Duque de Caxias RJ, Brazil 11 Center for Measurement Standards, Industrial Technology Research Institute ( CMS / ITRI ) , Hsinchu 30011, Chinese TaiPei, People ' s Republic of China 12 Swinburne University of Technology, John Street, Hawthorn, VIC 3122 Australia
简介 自 1978 年唐纳德·J·凯斯勒和伯顿·库尔帕莱斯发表论文《人造卫星的碰撞频率:碎片带的形成》以来,太空垃圾一直是太空参与者关注的重要问题。尽管迄今为止在碎片清除方面采取的行动很少,但该论文引发了数十年的研究,这些研究描述了外层空间碎片的数量、类型和轨道,以及制定了世界各地认可的自愿碎片减缓标准。当今现有的大部分太空垃圾都是推进剂爆炸或蓄意破坏行为的结果。已知最大的碎片产生事件是 2007 年中国的反卫星 (ASAT) 试验,其中 SC-19 动能拦截弹故意摧毁了一颗中国气象卫星。1 为了提供关于太空垃圾寿命的参考点,目前在轨道上运行的最古老的碎片是美国先锋 1 号卫星。先锋 1 号于 1958 年发射升空,进入中地球轨道 (MEO),并将在该轨道上停留至少 200 年,直到自然衰减回地球大气层或在此之前被故意脱离轨道。2
出席会议的还有: Gil Quiniones 总裁兼首席执行官 Joseph Kessler 执行副总裁兼首席运营官 Justin Driscoll 执行副总裁兼总法律顾问 Adam Barsky 执行副总裁兼首席财务官 Kristine Pizzo 执行副总裁兼首席人力资源和行政官 Sarah Salati 执行副总裁兼首席商务官 Robert Piascik 首席信息和技术官 Yves Noel 高级副总裁 – 战略和企业发展 Keith Hayes 高级副总裁 – 清洁能源解决方案 Daniella Piper 副总裁 – 数字化转型/总参谋长 Karen Delince 副总裁兼公司秘书 Eric Meyers 副总裁兼首席信息安全官 Joseph Leary 副总裁 – 社区和政府关系 Saul Rojas 副总裁 – 企业弹性 John Canale 副总裁 – 战略供应管理 Lawrence Mallory 高级主管 – 物理安全和危机管理 Adrienne Lotto 高级主管 – 能源安全和弹性计划 Victor Costanza 高级主管 – 配置控制和副 CISO Lorna Johnson 高级助理公司秘书 Sheila Quatrocci 助理公司秘书 Andrea Kelli Higgs 助理公司秘书
1. 引言 随着太空环境的使用和商业化程度不断提高,以及太空发射的便利性不断提高,地球轨道上的活跃卫星和轨道碎片数量也不断增加。轨道碎片是指在地球轨道或重新进入地球大气层的人造非功能性物体(包括碎片和元素);自太空探索初期以来,碎片的数量远远超过在轨运行的航天器 [1]。2022 年 7 月,美国空间监视网络的太空物体目录(仅考虑直径大于 5 厘米的碎片)报告了 8,943 艘航天器和 16,393 块轨道碎片。巨型星座(可能包括数万颗联网卫星的舰队)的计划部署标志着卫星运行范式的转变,并将加速已经高度拥挤的低地球轨道 (LEO) 的密集化。随着卫星轨道上越来越拥挤的活跃航天器和轨道碎片,发生碰撞的风险也在增加。碎裂事件可能会产生更多的碎片,有可能导致凯斯勒综合症,这是一种假设的最坏情况(由唐纳德·凯斯勒博士于 1978 年首次提出),即一系列连锁碰撞及其产生的碎片云可能会使地球轨道无法使用 [2]。凯斯勒事件的直接后果可能是深远的,使电信、宽带互联网和天气预报等地面服务陷入瘫痪,同时也妨碍未来的太空利用或探索 [3]。尽管人们越来越意识到轨道碎片带来的风险,但由于监管和政策环境落后于太空的快速发展,减轻和防止碎片的努力受到限制。国际协议和国家立法旨在确保在人烟稀少的太空环境中安全运行,而这种环境与当今拥挤的轨道领域越来越不相似。 1967 年《外层空间条约》和随后的 1976 年《责任公约》构成了国际空间法的基础,确认了空间物体的所有权,但并未直接涉及轨道碎片。根据这些规则,发射国对在其境内发射的物体拥有所有权,其他国家未经发射国同意不得收集这些物体 [3]。此外,发射国有责任赔偿其空间物体造成的损害。在考虑这些空间法基本原则如何适用于轨道碎片时,仍然存在不确定性:尽管大多数国家认为轨道碎片是空间物体,但《外层空间条约》和《责任公约》并未提供明确的定义,而且由于我们对大多数空间物体的跟踪和识别能力有限,在发生碰撞时识别发射国变得很复杂。如果没有监管要求或其他直接激励措施来防止轨道碎片,航天器所有者、运营商和发射提供商在遵守减少轨道碎片产生和风险的自愿准则方面进展缓慢。欧洲空间局 (ESA) 报告称,估计近地轨道上 30% 到 70% 的有效载荷(不包括载人航天)在报废时遵守脱轨准则。ESA 进一步指出,遵守碎片缓解措施的比例正在提高,但仍不足以在长期内显著降低碰撞风险 [2]。轨道碎片带来的挑战与臭氧层损耗等全球环境挑战有着内在的相似之处。司法当局和国际机构不应因为收益不确定而推迟行动,而应行使预防原则——环境法的一项长期信条——该原则建议各国采取行动解决构成长期环境威胁的环境问题,即使没有证据表明会发生危害 [4]。 《关于消耗臭氧层物质的蒙特利尔议定书》的签署和随后的实施是一个显著的例子,表明国际社会有效地动员起来,即使在科学不断发展和不确定的情况下,也致力于解决人类活动对环境造成的有害影响。2022 年 5 月,加伯和兰德发表了一篇论文,建议研究蒙特利尔
Singh Singh 1,Catine E. Greeson 2,Misy Fang 3,Yasmin N. Laymon 4,Vishai Khivansara 3,Yavin 3,Yavu T. Dura 1,荷兰人4,荷兰人4,Yixiang li 1,Musannad Abu-Remaleh 1,Abu-Remaleh 1,xinah li 1,xinah li 1,xinah li 1,xinah li 1,xinah li 1,xinah li s.SOL 2,Fraene Frama-Walton 2,Luis Hernandaz 2,Miguel P Balldoero 2,Bryn M. Leant Mean Mean Evely 2,Iolda Venndrell 8,Roman Fiker 8,Kessilla 8,Kessilla 8,Preparla C. Cukhale,Signoretti先知4,Peblo D. Sepolp 2,Earp 2,Earp D. Sepolp D.Sepolp D.