Bloombergnef(“ Bnef”),服务/信息来自选定的公共资源。彭博财务有限公司及其分支机构在提供服务/信息时,认为其使用的信息来自可靠的来源,但不能保证此信息的准确性或完整性,这些信息可能会更改,恕不另行通知,本文档中的任何内容均不得将其解释为这样的保证。本服务/文档中的陈述反映了相关文章或功能的作者的当前判断,不一定反映彭博金融公司L.P.,Bloomberg L.P.或其任何分支机构(“ Bloomberg”)的意见。彭博社不承担因使用本文档,其内容和/或本服务而产生的任何责任。此处的任何内容均不得构成或解释为金融工具的产品,或者是彭博关于投资或其他战略的投资建议或建议(例如,无论是否“购买”,“卖出”或“持有”投资)。通过此服务可用的信息不是基于对订户的个人情况的考虑,也不应将其视为足以基于投资决定的信息。您应该自己确定是否同意内容。本服务不应被解释为税收或会计建议,也不应将其作为旨在促进任何订户遵守其税收,会计或其他法律义务的服务。参与此服务的员工可以在服务/信息中提到的公司中担任职位。
➢通过Josephson和Quantum Hall效应定义H,kibble(瓦特)平衡:Nist(US),NRC(CA),Metas(SW),LNE(FR),Kriss(Kriss(Kr),MSL(NZ),MSL(NZ),BIPM等。➢joule余额:nim(CN)
历史上,在 SI 中,能量的定义仅适用于机械领域,其中给出了质量、时间和长度的单位。因此,电学单位只能通过复杂的机械实验来定义。以前,安培被定义为两根平行导线之间流动的电流在它们之间产生的明确定义的力,这是一个难以通过实验实现的抽象概念。随着量子电学标准的出现,特别是 1962 年 B. Josephson 对约瑟夫森效应的预测 1 ,以及 1980 年 K.v. Klitzing 发现量子霍尔效应 2 ,电学单位的机械实现停止了,电学单位与 SI 脱节,并被用作国际上的“常规”单位。2019 年的修订消除了这种二分法,并巩固了我们的单位制。质量的机械单位是使用约瑟夫森和量子霍尔效应通过电力定义的。虽然基布尔天平 3 成功地合理化了质量单位千克,但它从未在单一实验装置中做到这一点。通常,冯·克里青常数是在单独的实验中实现的,并通过传统的传输标准、导线或薄膜电阻器在基布尔天平中使用。美国国家标准与技术研究所 (NIST) 的研究人员在单个电流源装置中采用了两个量子电标准,其中基布尔天平的线圈
了解相互作用的粒子如何接近热平衡是量子模拟器面临的主要挑战 1,2。要充分释放此类系统以实现这一目标,需要灵活的初始状态准备、精确的时间演化和对最终状态表征的广泛探测。在这里,我们介绍了一个由 69 个超导量子比特组成的量子模拟器,它支持通用量子门和高保真模拟演化,其性能在交叉熵基准实验中超出了经典模拟的范围。与纯模拟模拟器相比,这个混合平台具有更多功能的测量功能,我们利用这些功能揭示了 XY 模型中由粗化引起的 Kibble-Zurek 缩放预测 3 的崩溃,以及经典的 Kosterlitz-Thouless 相变的特征 4。此外,数字门可以实现精确的能量控制,使我们能够研究本征态热化假设 5-7 对本征谱目标部分的影响。我们还展示了成对纠缠二聚体状态的数字制备,并对模拟演化中随后的热化过程中能量和涡度的传输进行了成像。这些结果确立了超导模拟数字量子处理器在多体光谱中制备状态和揭示其热化动力学方面的有效性。
量子临界性源自许多相互作用的量子粒子的集体行为,通常发生在物质不同相之间的过渡阶段。它是凝聚态物理学的基石之一,我们利用动态驱动的现象在嘈杂的中尺度 (NISQ) 量子设备上访问它。我们通过 Kibble-Zurek 过程探测可编程超导量子芯片上一维量子 Ising 模型的临界特性,获得缩放定律,并估计临界指数,尽管硬件上存在固有的错误源。此外,我们研究了 NISQ 计算机的改进(更多量子比特,更少噪声)将如何巩固这些通用物理属性的计算。单参数噪声模型捕捉了缺陷的影响并重现了实验数据。其系统研究表明,噪声与温度类似,在系统中引入了新的长度尺度。我们引入并成功验证了修改后的缩放定律,直接考虑了噪声,而无需任何先验知识。它使提取物理属性的数据分析对噪声透明。通过了解不完美的量子硬件如何改变物质量子态的真正属性,我们大大增强了 NISQ 处理器解决量子临界性以及其他潜在现象和算法的能力。