Michael BASSIK 高彩霞 Pietro GENOVESE 星野淳 秋津堀田 许爱龙 柯亨范 Henry KIM Silvana KONERMANN 智二 真尾圭二 西田宏 西濱修 濕木司 大森秀之 冈野秀之 Leopold PARTS 秦文宁 斋藤弘英 斋藤诚 佐佐木惠梨香 佐藤森敏 Virginijus SIKSNYS 矢千江望 山本隆 游佐耕介
诱导的所需基因表达一直是揭示基因功能和调节合成生物学和治疗应用的细胞活性的重要策略。Apart from ectopically expressing additional copies of a gene by introducing their open reading frames (ORFs), methods to arti fi cially activate endogenous copies of genes have been explored, including transcription activating factors tethered to zinc fi nger proteins ( Beerli et al., 2000 ) and transcription activator-like effectors (TALE) ( Miller et al., 2011 ; Zhang et al., 2011 ; Maeder等人,2013b; Perez-Pinera等,2013b)。Originally discovered as a virus-resistance mechanism from bacteria ( Barrangou et al., 2007 ), the CRISPR-Cas system has provided ef fi cient, precise, and scalable ways to modulate expression of genes, and has been successfully adopted for targeted gene activation ( Mali et al., 2013 ; Perez-Pinera et al., 2013a ; Maeder et al., 2013a ; Cheng et al., 2013年,Tanenbaum等人,2014年;为了使用CRISPR-CAS9实现基因激活,创建了催化失活的Cas9(DCAS9),以与特定的基因组区域结合而没有能力创建双链突破(Jinek et al。,2012; Gasiunas et al。,2012; Qi et al。,2013; Qi et al。,2013; Konermann et; Konermann et al an al an eal; konermann et al。,2013; a e e,2013; i。赋予DCAS9具有诱导基因表达的能力,已经探索了不同的转录激活域的基因激活强度(图1A)。第一代CRISPRA的灵感来自锌纤维和基于故事的方法,并使用了包括VP64或P65在内的单个激活域。vp64由VP16的四个副本组成,该副本是源自单纯疱疹病毒的转录激活因子。p65是NF-κB复合物的一部分,负责免疫信号传导中的转录激活。第二代CRISPRA系统制定了不同的策略来招募不同的激活剂的多个副本,包括用于招募10或24份VP64副本的Suntag阵列到给定的基因座,VP64,P65和RTA(VPR)的串联融合到DCAS9,以及
体内 RNA 敲低在疾病建模和治疗方面具有巨大潜力。尽管 CRISPR/Cas9 介导的永久性敲除靶基因的方法层出不穷,但针对 RNA 进行破坏的策略在治疗获得性代谢疾病(当不适合永久性修改基因组 DNA 时)和 RNA 病毒感染疾病(当没有致病 DNA 时,例如 SARS-Cov-2 和 MERS 感染)方面具有优势。最近,RNA 靶向 CRISPR 效应物 Cas13d 家族已被证明能够在体外实现对哺乳动物细胞中细胞 RNA 的强效下调(Konermann 等人,2018 年)。在各种 Cas13d 亚型中,CasRx(RfxCas13d)在 HEK293T 细胞中表现出最强的 RNA 敲低效率(Konermann 等人,2018 年)。然而,Cas13d 的 RNA 靶向活性仍需在体内进行验证。在本研究中,CasRx 系统被证明可以在小鼠肝细胞中有效且功能性地敲低与代谢功能相关的基因,包括 Pten 、 Pc- sk9 和 lncLstr 。CasRx 介导的多个基因同时敲低也可以通过 sgRNA 阵列实现,这为调节复杂的代谢网络提供了一种有用的策略。此外,AAV(腺相关病毒)介导的 CasRx 和 Pcsk9 sgRNA 递送到小鼠肝脏中成功降低了血清 PCSK9,从而显着降低血清胆固醇水平。重要的是,CasRx 介导的 Pcsk9 敲低是可逆的,并且 Pcsk9 可以反复下调,这为可逆地调节代谢基因提供了一种有效的策略。本研究提供了一个成功的概念验证试验,表明有效和调控性地敲低目标代谢基因,以实现肝脏中的设计代谢调节。代谢调节基因的靶向抑制通常用于建模和开发代谢疾病的治疗方法(Moller,2012 年)。近年来,使用各种调节剂实现了许多代谢调节策略,包括许多小分子化合物、核酸和治疗性多肽/蛋白质,靶向单个或多个特定分子产物,如酶、循环蛋白、细胞表面受体和细胞 RNA(Moller,2012 年)。代谢调控的应用
<区分雅各布·麦克斯韦·凯恩·玛丽亚连接泰勒·库西奥·贝克特·特雷弗·兰伯特·玛德琳·玛丽。 Aguissa A.小路易斯·李·摩尔玛丽亚·安吉拉塞缪尔·里德·德米特里·沃托的芦苇
与使用 CRISPR/Cas 系统进行 DNA 操作不同,关于基于 CRISPR/Cas 的 RNA 修饰的文献严重缺乏。最近,科学家对 Cas13 酶进行了表征,并证明可编程 RNA 编辑在效率和特异性方面优于现有的 RNA 靶向方法(Abudayyeh 等人,2017 年;Cox 等人,2017 年;Liu 等人,2017 年;Konermann 等人,2018 年)。据报道,由于缺乏基因组改变,CRISPR/Cas13 也比现有的 CRISPR/Cas 系统更安全。2018 年,最小的 RNA 靶向 Cas 核酸酶 Cas13d 被描述。在 Cas13d 家族中,来自 Ruminococcus flavifaciens 的 CasRx(也称为 RfxCas13d)具有最高的 RNA 裂解活性和在人类细胞中的特异性。CasRx 的 RNA 靶向也比短发夹 RNA (shRNA) 干扰效果更好。重要的是,Cas13d 核酸酶可以处理 CRISPR 阵列,从而实现多重靶向(Konermann 等人,2018 年)。随后对 CasRx 的研究表明,在各种动物模型中可以有效地敲低信使 RNA (mRNA),并在植物中实现转基因表达(Mahas 等人,2019 年;Kushawah 等人,2020 年)。值得注意的是,使用 AAV 载体在新生血管性年龄相关性黄斑变性 (nAMD) 小鼠模型中证明了 CRISPR/CasRx 的治疗潜力。 CRISPR/CasRx 系统的递送成功抑制了血管内皮生长因子 (VEGF) 的 mRNA,这是致病性眼部血管生成的关键因素,并且随后显示出脉络膜新生血管 (CNV) 面积的减少,这是 nAMD 的标志 ( Zhou et al., 2020 )。这些研究表明 CRISPR/CasRx 系统的治疗潜力。在这里,我们描述了三种不同的方法来有效地进行 CRISPR/CasRx 介导的血管内皮生长因子 A (VEGFA) 的 RNA 敲低。我们通过靶向 VEGFA mRNA,使用不同形式的单向导 RNA (sgRNA) 检查了 CRISPR/CasRx 系统的 RNA 敲低效率。为了应用于治疗学开发,我们生成了由 CasRx 和单个前 sgRNA 或多个前 sgRNA(阵列)组成的一体化 AAV 构建体,以检查系统的 RNA 敲除效率。本文介绍了使用 CasRx 和向导 RNA 变体进行体外 RNA 编辑的指导手册。