脑肿瘤严重影响生活质量,并改变患者及其亲人的一切。脑肿瘤的诊断通常从磁共振成像 (MRI) 开始。从 MRO 图像手动诊断脑肿瘤通常需要专家放射科医生。然而,这个过程既耗时又昂贵。因此,需要一种计算机化技术来检测 MRI 图像中的脑肿瘤。使用 MRI,使用三维 (3D) 克罗内克卷积特征金字塔 (KCFP) 的新机制来分割脑肿瘤,解决像素丢失和多尺度病变处理薄弱的问题。用 3D 克罗内克卷积代替单一扩张率,同时使用 3D 特征选择 (3DFSC) 进行局部特征学习。在 3DFSC 末尾添加 3D KCFP 以解决多尺度病变处理薄弱的问题,从而有效分割不同大小的脑肿瘤。使用具有全局阈值的 3D 连通分量分析作为后处理技术。标准多模态脑肿瘤分割 2020 数据集用于模型验证。与其他基准方案相比,我们的 3D KCFP 模型表现优异,整个肿瘤、增强肿瘤和肿瘤核心的骰子相似系数分别为 0.90、0.80 和 0.84。总体而言,所提出的模型在脑肿瘤分割方面是有效的,这可能有助于医生对未来的治疗计划做出适当的诊断。
[1] Fetsje Bijma、Jan C. de Munck 和 Rob M. Heethaar。“时空 MEG 协方差矩阵建模为 Kronecker 积之和”。在:NeuroImage 27.2(2005 年 8 月),第 402-415 页。[2] Kristjan Greenewald 和 Alfred O. Hero。“通过 Kronecker 积展开进行正则化块 Toeplitz 协方差矩阵估计”。在:2014 年 IEEE 统计信号处理 (SSP) 研讨会。ISSN:2373-0803。2014 年 6 月,第 9-12 页。[3] Jan Sosulski 和 Michael Tangermann。“引入块 Toeplitz 协方差矩阵以重新掌握事件相关电位脑机接口的线性判别分析”。收录于:arXiv:2202.02001 [cs, q‑bio] (2022 年 2 月)。arXiv:2202.02001。[4] Arne Van Den Kerchove 等人。“使用正则化时空 LCMV 波束形成对事件相关电位进行分类”。en。收录于:Applied Sciences 12.6 (2022 年 1 月),第 2918 页。