从左至右依次为:安·卡拉克里斯蒂 (Ann Caracristi);所罗门·库尔巴克 (Solomon Kullback);亚伯拉罕·辛科夫 (Abraham Sinkov);胡安妮塔·穆迪 (Juanita Moody);后排身份不明男子;后排还有美国国家安全局局长劳伦斯·弗罗斯特 (Laurence Frost) 海军中将;美国少将、生产部 (ADP) 助理主任约翰·戴维斯 (John Davis);后排是美国国家安全局副局长路易斯·托德拉 (Louis Tordella) 博士;只能看见戴着眼镜的男子很可能是未来的副局长本森·巴夫汉 (Benson Buffham);后排第二位身份不明男子;密码学家、ADP 的妻子威尔玛·戴维斯 (Wilma Davis);保罗·内夫 (Paul Neff);弗兰克·罗利特 (Frank Rowlett);理查德·科恩 (Richard Kern);弗朗西斯·雷文 (Francis Raven)。
我们介绍了内核弹性自动编码器(KAE),这是一种基于变压器架构的自我监管的生成模型,具有增强的分子设计性能。KAE采用了两个创新的损失函数:修改后的最大平均差异(M-MMD)和加权重建(L WCEL)。 与使用传统的kullback损失(vae的Leibler损失或标准的最大平均差异)相比,M-MMD损失显着改善了KAE的生成性能。 包括加权重建损失l wcel,Kae同时实现有效的生成和准确的重建,从而允许在现有生成方法中介于VAE和自动编码器之间中间的生成行为。 KAE的进一步进步包括与有条件生成的集成,在受限的优化中设定了新的最新基准测试。 此外, KAE已经证明了其在对接应用中产生具有良好结合亲密关系的分子的能力,如Autodock Vina和Glide分数所证明的那样,表现出优于培训数据集中所有现有的候选者。 除了分子设计之外,Kae还希望在广泛的应用中逐渐解决问题。KAE采用了两个创新的损失函数:修改后的最大平均差异(M-MMD)和加权重建(L WCEL)。与使用传统的kullback损失(vae的Leibler损失或标准的最大平均差异)相比,M-MMD损失显着改善了KAE的生成性能。包括加权重建损失l wcel,Kae同时实现有效的生成和准确的重建,从而允许在现有生成方法中介于VAE和自动编码器之间中间的生成行为。KAE的进一步进步包括与有条件生成的集成,在受限的优化中设定了新的最新基准测试。KAE已经证明了其在对接应用中产生具有良好结合亲密关系的分子的能力,如Autodock Vina和Glide分数所证明的那样,表现出优于培训数据集中所有现有的候选者。除了分子设计之外,Kae还希望在广泛的应用中逐渐解决问题。
我们引入了一种概率建模,用于分解住宅能源使用的自下而上模拟。参数概率分布的建模,其参数在用法和设备功率方面具有自然解释。人类行为(例如睡眠和家庭占用变量)也被视为其相应训练的概率模型。模型参数是通过最小化Kullback -Leibler差异与已知设备和行为使用数据的最小化调整的。自生发射的光伏能量包含在模拟中,并使用用于存储和电动车辆使用的电池。仿真匹配欧洲重塑和意大利负载数据集中的个体和汇总使用负载程序。获得的模型对于住宅分类的模拟很有用,允许单个设备从房屋变为房屋。概率分布可以用作能源管理系统,风险管理和电网故障预测的先验知识,并且可以根据非平稳的实时房屋行为和设备使用来调整。2022 Elsevier B.V.保留所有权利。
摘要 为了对广域电网进行监控,人们开发了广域监控系统 (WAMS)。每个变电站都设有全球定位系统 (GPS) 接收系统以提供可信的授时。因此,对于 WAMS 来说,在广域范围内维持真实的 GPS 授时至关重要。然而,由于未加密的信号结构和低信号功率,GPS 授时容易受到欺骗。因此,为了从欺骗中获得可信的 GPS 授时,人们在人工智能 (AI) 框架下开发了一种新的广域监控算法,该算法由分布式信念传播 (BP) 和双向循环神经网络 (RNN) 组成。这种联合 BP-RNN 算法通过利用其分布式处理能力评估估计的 GPS 授时误差来验证每个变电站的身份。特别是,双向 RNN 在人工智能框架下提供了一种快速的授时误差估计方法。仿真结果验证了该方法比基于 Kullback-Leibler 散度的方法具有更快的检测时间,并且定时误差估计精度超过了 IEEE C37.118.1-2011 标准规定的限制。
摘要。在本文中,我们通过在一组局部相似性措施上最小化促进平滑度的函数,以比较给定图像的平均值以及在大量子框上比较一些候选图像,从而确定了给定的嘈杂图像。相关的凸优化问题具有大量的约束,这些约束是由kullback-leibler差异引起的扩展实现功能引起的。另外,这些非线性约束可以被重新重新构成AFFINE,这使该模型看起来更加易于处理。用于对模型的两种公式的数值处理(即原始限制和具有限制的原始公式),我们提出了一种相当普遍的增强拉格朗日方法,能够处理大量约束。提供了一种独立的,无衍生的全球融合理论,可以扩展到其他问题类别。对于在我们建议的图像denoising模型的设置中解决所得子问题的解决方案,我们使用合适的随机梯度方法。为了比较配方和相关的增强拉格朗日方法,提出了几个数值实验的结果。
术后多形性胶质母细胞瘤 (GBM) 的分割对于肿瘤治疗场 (TTFields) 治疗规划和其他临床应用至关重要。最近开发的用于术前 GBM 分割的方法在术后 GBM MRI 扫描中表现不佳。在本文中,我们提出了一种用于术后患者 GBM 分割的方法。我们的方法在目标函数中结合了一组分割网络和 Kullback-Leibler 散度一致性得分,以估计预测标签不确定性并应对噪声标签和观察者间差异。此外,我们的方法整合了手术类型并计算非肿瘤组织轮廓以自动分割肿瘤。我们在接受 TTFields 治疗的 340 次增强 T1 MRI 扫描数据集上训练和验证了我们的方法(270 次扫描用于训练,70 次扫描用于测试)。为了进行验证,我们开发了一个使用不确定性图和分割结果的工具。我们的工具可以对组织进行可视化和快速编辑,以根据用户偏好改善结果。三位医生在 12 次不同的 MRI 扫描中审查并评分了我们的分割和编辑工具。验证集平均 (SD) Dice 分数分别为整个肿瘤、切除、坏死核心和增强组织的 0.81 (0.11)、0.71 (0.24)、0.64 (0.25) 和 0.68 (0.19)。医生将 72% 的分割 GBM 评为可用于治疗计划或更好。另外 22% 可以在合理的时间内手动编辑以获得临床上可接受的结果。根据这些结果,提出的 GBM 分割方法可以集成到 TTFields 治疗计划软件中,以缩短计划过程。总而言之,我们通过手术类型、解剖信息和不确定性可视化扩展了最先进的术前 GBM 分割方法,以促进 TTFields 治疗计划中术后 GBM 的临床可行分割。
根据其定义,形容词的成真是指神经系统的生理机械性,以支持生物体消耗能量的能力[1]。将此概念置于物理系统上,然后创造了量子成分,以表示可以通过等激素转化提取的最大工作量[2]。尤其是,量子麦内氏疗法量化了存储在活性量子状态中的能量量,并且可以通过使状态被动提取[3-6]。简单地说,一个被动状态在能量基础上是对角线,其本征态被以其特征值的下降幅度排序。gibbs状态被称为完全被动[3]。量子成分在量子热力学中起着重要作用[7]。尤其是在评估真正量子特性的热力学值[8-11]时,例如挤压和非平衡储层[12,13],相干性[14,15]或量子相关性[16,17],它已证明是强大的。但是,如果量子系统与热储层没有接触,则计算量子的麦角镜远非微不足道。这是由于以下事实:麦芽糖是由所有可以在系统上起作用的单位的最大值决定的[2]。请注意,并非所有被动状态都可以通过单一行动,包括完全被动状态来达到。在分析的第二部分中,我们转向一个统一的框架,即几何量子力学。利用这种方法[20-22],我们定义了几何相对熵。在本文中,鉴于量子的插入可以写成量子和经典的相对熵的差异(特征值分布的kullback -leibler差异),我们定义了经典的成真,从而量化了量子的最大作用,从而逐渐表现出了量子,从而量化了量子的量子,从而可以逐步提取出拟南象中的量子。连贯[18,19]。这样,表征一次性量子工作的方法变得特别透明[23 - 27]。在此范式中,工作是通过第一个测量系统能量而确定的,然后让其在时间依赖性
摘要:卫星仪器昼夜监测地球的地面,因此,地球观测(EO)数据的大小显着增加。机器学习(ML)技术通常用于分析和处理这些大EO数据,而一种众所周知的ML技术是支持向量机(SVM)。SVM构成了二次编程问题,量子计算机(包括量子退火器(QA))以及基于门的量子计算机有望比常规计算机更有效地求解SVM;通过使用量子计算机/常规计算机来培训SVM,代表量子SVM(QSVM)/经典SVM(CSVM)应用程序。但是,量子计算机无法通过使用QSVM来解决许多实用的EO问题,因为它们的输入量很少。因此,我们组装了一个给定的EO数据的核心(“数据集的核心”),用于在小量子计算机上训练加权SVM,这是一个大约5000个输入量子位的D-Wave量子式退火器。核心是原始数据集的一个小的,代表性的加权子集,与原始数据集相比,可以通过在小量子计算机上使用建议的加权SVM来分析其性能。作为实际数据,我们使用合成数据,虹膜数据,印度松树的高光谱图像(HSI)以及旧金山的偏光仪合成孔径雷达(Polsar)图像。我们通过使用Kullback-Leibler(KL)散射测试来测量原始数据集及其核心之间的接近度,此外,我们还通过使用D-Wave量子量子Quantum Nealealer(D-Wave QA)和一台传统计算机在我们的核心数据上训练了加权SVM。我们的发现表明,核心具有很小的kl差异(较小的较小)近似于原始数据集,而加权QSVM甚至在我们的一些实验实例上都超过了核心上的加权CSVM。作为一个侧面结果(或副产品结果),我们还提出了我们的KL差异发现,以证明我们的原始数据(即我们的合成数据,虹膜数据,高光谱图像和Polsar图像)和组装的壳体之间的亲密关系。