领先的风力涡轮机制造商正在竞相制造更大、更强大的海上机器。传动系统配置通常使用永磁同步发电机 (PMSG),要么是直接驱动配置,要么与变速箱耦合。随着对关键稀土磁体的需求不断增加,新的发电机技术正在涌现,以确保稳定和安全的供应链。我们评估了三种不同的径向磁通同步发电机拓扑结构,这些发电机采用稀土含量减少或不含有稀土的高磁场磁体:直接驱动内部 PMSG (DD-IPMSG)、结合中速变速箱和 PMSG (MS-PMSG) 的齿轮传动系统和直接驱动低温超导发电机 (DD-LTSG)。我们在更大的完整涡轮机设计框架内为每种技术开发了一个概念设计模块。这为标称功率为 15-25 MW 的技术提供了最公平的比较,这些技术代表了下一代海上风力涡轮机。分析表明,如果各项技术的运营支出 (OpEx) 保持不变,则 MS-PMSG 可实现最低的 LCOE,与 DD-IPMSG 相比可降低高达 7%。DD-LTSG 还可使固定底部风力涡轮机的 LCOE 值降低 2%–3%,浮动平台的 LCOE 值降低 3%–5%。然而,结果对 OpEx 假设很敏感,仅仅增加 10% 就会导致结论发生变化。
收到日期:2021 年 2 月 21 日,修订日期:2020 年 2 月 20 日,接受日期:2022 年 3 月 29 日,发布日期:2022 年 9 月 30 日 摘要:本文利用不同的进化优化算法,研究了印度库鲁克谢特拉社区独立式 (HRES) 的最佳经济规模。在优化过程中,将光伏 (PV)、风力涡轮机 (WT)、电池和柴油发电机 (DEG) 等不同子系统的数量视为感兴趣的变量,以净现值成本、回收期、计算成本和平准化能源成本 (LCOE) 作为绩效衡量标准。通过对结果的分析,可以确定与粒子群优化 (PSO)、引力搜索算法 (GSA)、灰狼优化器 (GWO) 和组合 PSO-GSA 算法提供的解决方案相比,鲸鱼优化算法 (WOA) 提供的解决方案在 LCOE、净现值和回收期方面表现最佳。对这些算法的相对性能进行了定性和定量比较和对比,不仅突出了研究结果,而且突出了从经济角度对独立 HRES 进行最佳定型(根据问题陈述),还突出了其他性能指标,例如收敛时间、计算成本和复杂性。模拟在 MATLAB 软件中执行。关键词:经济定型、HRES、LCOE、独立、优化算法
LCOE 是指为满足股权投资最低收益率而收回所有项目成本所需的每兆瓦时 (MWh) 长期购电价格。BNEF 使用其专有的能源项目资产估值模型 (web | 终端),根据与每种技术相关的输入数据计算 LCOE,同时考虑项目的建设地点。计算基于项目融资计划,涵盖项目的整个生命周期。这使我们能够捕捉现金流时机、开发和建设成本、多个融资阶段、长期债务工具的利息和税收影响以及折旧等因素对项目成本的影响。对于输入参数
在2015年巴黎协定之后,很明显,各国必须面临实质性快速的能源过渡,以减少环境影响和不可持续的不可再生自然资源的消耗。尤其是,电力生产应从基于化石燃料的集中式配置转变为基于RES的分布式系统,其中太阳能和风应该起主要作用。同时,即使间歇性地渗透到不直接控制的生成来源,也应保证电网的高安全性和可靠性。1因此,将从VRES部门询问新服务,以更好的生产预测和分配性,例如,通过安装存储系统以及积极参与电力市场。2,由于空气和环境质量的改善以及新的业务部门和工作的潜在创造,预期的能源转变将为环境和社会带来无疑的好处。3然而,由于新一代能力,网格基础架构和数字化的投资对于适应这种特征和快速变化是必要的,因此需要为当前的能源系统增加成本。1本研究重点是如何将这些额外成本包括在未来的技术评估中,以避免社区完全社交和支付。通常,将LCOE计算为发电厂产生的总成本除以生命周期中产生的总能量。电厂的技术经济评估是基于电平的电平成本(LCOE),这相当于与选定类型的发电厂生产千瓦时的成本。成本通常包括初始投资,运营和维护(O&M)支出,燃料和易消耗成本(如果适用),而考虑到发电厂及其组件的降解率,可以调整产生的能源量。该定义在参考文献4中描述。对于PV系统,参考文献5-7提出了其他LCOE伪造。基本公式可以像参考5中的5次扩展,并提供有关计算年度电力生产的更多详细信息,并用WACC(加权平均资本成本)代替折现率。在这里给出了公式,就像经典LCOE的示例:
图 5:杰拉的碧南燃煤发电厂................................................................ 5 图 6:致力于氨混燃技术的国家和主要公司。 6 图 7:2024 年平准化电力成本比较.............................................................. 8 图 8:2030 年平准化电力成本比较.............................................................. 8 图 9:2050 年平准化电力成本比较.............................................................. 8 图 10:不同技术的平准化电力成本比较............................................................. 10 图 11:发电和生产绿色 NH3 产生的排放量......................................................... 11 图 12:发电和生产蓝色 NH3 产生的排放量......................................................... 11 图 13:发电和生产灰色 NH3 产生的排放量......................................................... 11 图 14:2030 年的边际减排成本......................................................................... 12 图 15:2050 年的边际减排成本......................................................................... 12 图 16:绝非玩笑:CO 2 与 N 2 O 的全球变暖潜能值......................................................................................................... 12 图 17:一氧化二氮图 18:2013 年中国氨气相关火灾 .............................................................. 13 图 19:日本历史氨气需求量 .............................................................. 15 图 20:日本当前氨气需求规模及 2030 年、2050 年目标 ............................................................................................................. 16 图 21:全球理论累计氨气供应量(由开发商提出的清洁制氢项目折算而来) 16 图 22:日本氨气生产成本展望 ............................................................. 17 图 23:LCOE 比较(20% 氨气混烧) ............................................................. 19 图 24:LCOE 比较(50% 氨气混烧) ............................................................. 19 图 25:LCOE 比较(100% 氨气燃烧) ............................................................. 19 图 26:燃煤电厂升级改造影响燃烧含 20% 氨的混合物 ................................................................................................................ 20
聚光光伏 (CPV) 是一种太阳能发电技术。该方法利用集中的入射阳光照射到高效太阳能电池上,使用 6 结太阳能电池,保持了太阳能转换效率 (47.6%) 的记录 [1]。然而,由于材料成本和技术复杂性,该技术仍然不如基于晶体硅的光伏技术有竞争力。平准化能源成本 (LCOE) 是确定光伏技术潜在商业化的公认指标。它通过考虑诸如光伏板的寿命、初始成本和维护等参数来表征投资回报率。降低 CPV LCOE 的一种方法是简化组装过程。另一种方法是通过降低太阳能电池的工作温度等方式延长模块寿命。事实上,入射光高度集中到 CPV 太阳能电池上意味着大量的转换
摘要:小型聚光太阳能发电厂目前尚未普及,因为其平准化电力成本 (LCoE) 过高,而容量 >100 MW 的 CSP 发电厂的 LCoE 低于 20 cEUR/kWh。在 CSP 发电厂内集成固态转换器可以提高整个技术的可扩展性和经济竞争力,尤其是在较小规模下,因为固态转换器的转换效率与尺寸的相关性较弱。本文提出了一种带有高温热电子能量转换器 (TEC) 的系统,以及设计为即使提供高浓度比也很便宜的光学聚光器,以提高 CSP 发电厂的成本效益,从而实现经济可持续性和市场竞争力。这是可能的,因为 TEC 可以充当转换顶循环,直接产生电能,通过应用实际条件估计可能的转换效率为 24.8%,并为二次热阶段提供有用的热流。根据光学聚光器和 TEC 开发既定的技术规范,并根据合理的经济假设,估计总工厂转换效率为 35.5%,LCoE 为 6.9 cEUR/kW,并考虑到 1 MW 输入太阳能系统配备 8 小时储能罐的可能性。与其他可用的小容量可再生能源技术相比,计算得出的预测值极具竞争力,并为加速部署技术努力以展示所提出的解决方案开辟了道路。
* 计算 Semtive 每千瓦时平均成本时,不包括税收优惠和国家补贴。 * 电网成本基于日间等级。 * Semtive LCOE 是根据低性能阵列和 PPA 模型估算的。
本研究旨在评估用于第三代聚光太阳能发电系统中热能吸收器的粒子的光学特性。其特性包括使用积分球进行 UV-Vis NIR 测量以测量太阳吸收率,同时使用反射计测量热发射率。通过结合吸收率和发射率数据,计算出太阳吸收效率。利用激光闪光分析、差示扫描量热法和热重分析来确定热导率和比热。最初测量的粒子的太阳吸收率为 0.90。在 1000 ◦ C 的空气中暴露后,它降至 0.73。然而,经过还原过程,粒子恢复了 0.90 的吸收率。热老化和恢复重复多次,始终达到 0.90 的吸收率。粒子的热导率范围为 0.50 至 0.88 W/(mK)。发现太阳光吸收率受颗粒中氧化铁类型的影响。以赤铁矿为主的颗粒太阳光吸收率降低,而含有磁铁矿、方铁矿和铁的颗粒吸收率则增加。开发颗粒的估计成本比当前产品低十倍以上。考虑到组件成本对平准化电力成本 (LCOE) 有显著影响,与其他产品相比,此次降价相当于 LCOE 下降 8%。低成本的热能介质有望在第三代聚光太阳能发电系统中降低 LCOE。