沉积技术在TOPCON过程中起关键作用。最初通过使用LPCVD来沉积多晶硅的早期采用者最初在半导体行业的脚步中遵循。但是,这种方法遭受了前面多硅层的不希望沉积,称为环绕式,必须主动去除。这不仅会随着涉及的步骤增加而增加成本,而且导致产量下降。鉴于其具有创新的倾向,PV行业开始使用经过调整的水平载荷LPCVD配置,以使环绕型保持在限制范围内。我们还看到了其他几种同时开发的沉积技术。今天,几乎所有在PV中已知的沉积技术,包括PECVD,PVD和Peald,都有一个调整的版本,用于在TopCon中应用。这些工具旨在覆盖后表面工程的所有方面 - 应用氧化隧道的应用,多硅烷沉积和随后的掺杂。更重要的是,他们已经能够处理高达210毫米的较大晶片(G12)。
为了制备高击穿电压薄膜,对高击穿电压材料有许多要求,[5,12]例如,介电常数要尽可能大,介电材料在硅衬底上必须是热力学稳定的。[6,8,13]目前对击穿强度的研究工作都是在PECVD/LPCVD上进行的,[10,14]但本实验采用ICP-CVD模型制备氮化硅薄膜,可以提供更多的能量,促进反应气体的分解,制备出击穿强度更大的薄膜。氮化硅薄膜中的氢含量对薄膜的击穿强度影响很大。[15]在薄膜的成分中,Si-H键在薄膜的组成中起着基础性的作用,随着薄膜中氢含量的变化,薄膜的电学性质将发生变化。 [6,16,17]当薄膜中氢含量较高时,硅的悬挂键会被H填充,会增加薄膜的稳定性,提高击穿强度。[18]但关于H含量与薄膜击穿电压的关系,在ICP-CVD机上进行的实验很少,结论也不完善,因此本实验采用ICP-CVD机进行薄膜沉积。[19,20]