微度是一种无意的,瞬态的意识丧失,与睡眠相关,持续到15秒。脑电图(EEG),记录已广泛用于诊断和研究各种神经系统疾病。这项研究分析了时间序列EEG信号,以使用两个深度学习模型来预测微渗:长期术语记忆(LSTM)和人工神经网络(ANN)。调查结果表明,ANN模型在微填料预测中实现了出色的指标,在关键性能指标中的表现优于LSTM。该模型表现出了出色的性能,如散点图,R2分数,平均绝对误差(MAE),均方误差(MSE)和根平方误差(RMSE)的结果所证明的。与LSTM模型相比,在两个模型之间,ANN模型在两个模型之间达到了最重要的R2,MAE,MSE和RMSE值(0.84、1.10、1.90和1.38)。这项研究的关键贡献在于其开发全面有效的方法,以准确预测来自EEG信号的微度事件。
阿拉伯手写识别(AHR)由于阿拉伯文字的复杂性和培训数据的可用性有限,提出了独特的挑战。本文提出了一种在强大的CNN-BLSTM体系结构中集成生成对抗网络(GAN)以进行数据增强的方法,旨在显着提高AHR性能。我们采用了CNN-BLSTM网络,加上连接式时间分类(CTC)进行准确的序列建模和识别。为了解决数据限制,我们结合了基于gan的数据增强模块,该模块在IFN-En-Enit Arabic手写数据集中训练,以生成现实和多样化的合成样本,从而有效地增强了原始的培训语料库。对IFN-ENIT基准的广泛评估证明了采用方法的功效。我们达到95.23%的识别率,超过基线模型3.54%。本研究提出了一种有希望的AHR数据增强方法,并证明了单词识别准确性的显着提高,为更健壮和准确的AHR系统铺平了道路。
对于鉴定生物化学过程和活细胞中生物学规范至关重要的主要营养素是蛋白质。蛋白质通常围绕由其家庭类型定义的一个或几个功能。因此,需要识别和分类来根据其结构和家庭分离蛋白质。在这项工作中,我们建立了一个模型来对蛋白质序列的家庭进行分类。我们使用的蛋白质序列数据集由各种生物学意义的大分子组成。分类器是使用BI-LSTM深入学习的。我们通过从结构生物信息学研究合作社的蛋白质数据库中收集数据集,使用令牌化对数据进行预处理,并基于BI-LSTM的深度学习网络对分类器进行建模。由于我们获得了受过训练的模型的最佳准确率,因此我们使用学习曲线,准确率和损失的评估指标来找出模型性能。结果表明,Deep Bi-LSTM具有拟合学习曲线,99%的精度率和0.042损失的出色性能。
摘要。使用基于特征的混合方法,将基于变换的特征与基于图像的灰度共生矩阵特征相结合。在对脑出血 CT 图像进行分类时,基于特征的组合策略比基于图像特征和基于变换特征的技术表现更好。使用深度学习技术(尤其是长短期记忆 (LSTM))的自然语言处理已成为情绪分析和文本分析等应用中的首选。这项工作提出了一个完全自动化的深度学习系统,用于对放射数据进行分类以诊断颅内出血 (ICH)。长短期记忆 (LSTM) 单元、逻辑函数和 1D 卷积神经网络 (CNN) 构成了建议的自动化深度学习架构。这些组件均使用 12,852 份头部计算机断层扫描 (CT) 放射学报告的大型数据集进行训练和评估。
摘要 - 阿尔茨海默氏症是一种随着时间的流逝而恶化并影响记忆,思维和行为的脑部疾病。阿尔茨海默氏病(AD)如果被诊断出来,可以治疗和治疗,从而减慢症状的进展并改善生活质量。在这项研究中,我们建议使用视觉变压器(VIT)和BI-LSTM处理MRI图像以诊断阿尔茨海默氏病。我们使用VIT从MRI提取特征,然后将其映射到特征序列。然后,我们使用BI-LSTM序列建模来保持相关特征之间的相互依赖性。此外,我们使用阿尔茨海默氏病神经成像倡议(ADNI)的数据评估了AD患者二元分类模型的性能。最后,我们对文献中其他深度学习模型进行了评估。所提出的方法在准确性,精度,F得分和回忆方面表现良好,以诊断AD。
摘要本文介绍了糖尿病分类方法的开发,利用卷积神经网络(CNN)和长期记忆(LSTM)模型。所提出的方法利用LSTM和CNN体系结构的优势有效地捕获顺序模式并从输入数据中提取有意义的特征。全面包含糖尿病患者相关特征的数据集用于训练和评估分类器。评估指标,例如KAPPA评分,F1得分,准确性,精度和召回率,以评估每个模型的性能。结果表明,CNN-LSTM模型的表现优于其他模型,包括逻辑回归,随机森林,SVM和KNN,其令人印象深刻的精度为97%。这些发现阐明了拟议方法在准确分类糖尿病中的有效性,从而导致糖尿病诊断和治疗的显着进步,并为个性化医疗保健打开了令人兴奋的可能性。
摘要本文介绍了糖尿病分类方法的开发,利用卷积神经网络(CNN)和长期记忆(LSTM)模型。所提出的方法利用LSTM和CNN体系结构的优势有效地捕获顺序模式并从输入数据中提取有意义的特征。全面包含糖尿病患者相关特征的数据集用于训练和评估分类器。评估指标,例如KAPPA评分,F1得分,准确性,精度和召回率,以评估每个模型的性能。结果表明,CNN-LSTM模型的表现优于其他模型,包括逻辑回归,随机森林,SVM和KNN,其令人印象深刻的精度为97%。这些发现阐明了拟议方法在准确分类糖尿病中的有效性,从而导致糖尿病诊断和治疗的显着进步,并为个性化医疗保健打开了令人兴奋的可能性。
产前干预可以降低产后认真的冠心病患者的风险,但目前的诊断是基于定性标准,这可能导致临床医生之间的诊断差异。目的:使用深度学习模型检测患有低塑性左心脏综合征(HLHS)胎儿的心脏超声(US)视频的形态和时间变化。招募了一小部分健康和13名HLHS患者,并收集了三个妊娠时间点的超声视频。对视频进行了预处理并分段到心脏周期视频,并培训了五个不同的深度学习CNN-LSTM模型(Mobilenetv2,Resnet18,Resnet15,Resnet50,Densenet121和Googlelenet)。最佳表现的三个模型用于开发一种新型的堆叠CNN-LSTM模型,该模型是使用五倍的交叉验证对HLHS和健康患者进行分类的训练。堆叠CNN-LSTM模型的准确性,精度,敏感性,F1得分和90.5%,92.5%,92.5%,92.5%,92.5%和85%的精度,精度,敏感性,F1得分和特异性的准确性,精度,敏感性,F1得分和特异性分别优于其他预先训练的CNN-LSTM模型,分别是视频范围的分类以及90级分类和92。使用超声视频的主题分类分别为92.5%,92.5%和85%。这项研究表明,使用深度学习模型使用超声视频对CHD产前患者进行分类的潜力,该视频可以在临床环境中对疾病的客观评估进行分类。
这些研究活动将通过增加高级科学家的数量(在此期间,LSTM 雇用的科学家数量将增加 25%)、加强和扩大我们的伙伴关系和合作以及制定新的全球发展和领导力计划来加强。利物浦和马拉维的实验医学和实验室研究的基础设施投资以及对其他全球研究中心的投资将为此奠定基础。与社区的接触和建立平等的伙伴关系将确保我们的研究持续具有相关性,并在改善健康结果方面产生最大的影响和效益
摘要 — 使用脑信号进行运动运动解码 (MKD) 对于开发用于康复或假肢设备的脑机接口 (BCI) 系统至关重要。表面脑电图 (EEG) 信号已广泛应用于 MKD。然而,来自皮质源的运动解码很少被探索。在这项工作中,已经探索了使用 EEG 皮质源信号进行手部运动解码以执行抓取和举起任务的可行性。特别是,利用了运动前 EEG 片段。提出了一种基于残差卷积神经网络 (CNN) - 长短期记忆 (LSTM) 的运动解码模型,该模型利用运动前大脑活动中存在的运动神经信息。在运动开始前 50 毫秒的各种 EEG 窗口用于手部运动解码。实际和预测手部运动之间的相关值 (CV) 被用作源域和传感器域的性能指标。在传感器和源域比较了所提出的深度学习模型的性能。结果证明了使用运动前 EEG 皮质源数据进行手部运动学解码的可行性。