我们研究以相等的连续扭角排列在楼梯堆叠配置中排列的三层石墨烯。在Moiré晶体模式的顶部,出现了我们绝热处理的超莫雷长波长调制。对于每个山谷,我们发现两个中央频带是拓扑,Chern数字C =±1在Supermoiré尺度上形成Chern Mosaic。Chern域围绕高对称性堆叠点ABA或BAB,并通过连接频谱完全连接的AAA点的无间隙线将它们分开。在手性极限中,以θ〜1的魔法角度为单位。69◦,我们证明了中央频带在ABA和BAB处的理想量子曲率完全弯曲。此外,我们将它们分析为具有±2的固有颜色键入状态的叠加,而Chern Number normume∓1。为了与实验性配置联系起来,我们还以有限的波纹探索了非手续极限,并发现拓扑结实的Chern Mosaic模式确实很健壮,并且中央频带仍然与偏远频段分开。
联合主席:Muzaffar Qazilbash,医学博士;德克萨斯州休斯敦市MD安德森癌症中心;电话:713-745-3458;电子邮件:mqazilba@mdanderson.org联合主席:医学博士Heather Landau;纽约纽约纪念斯隆·凯特林癌症中心;电话:212-639-8808;电子邮件:landauh@mskcc.org联合主席:Taiga Nishihori,医学博士;佛罗里达州坦帕市莫菲特癌症中心;电话:813-745-8156;电子邮件:taiga.nishihori@moffitt.org科学总监:Marcelo Pasquini,医学博士,MS; CIBMTR®(国际血液和骨髓移植研究中心),威斯康星州密尔沃基医学院,威斯康星州;电话:414-805-0680;电子邮件:mpasquini@mcw.edu科学总监:Othman Akhtar,医学博士,MBBS; CIBMTR®(国际血液和骨髓移植研究中心),威斯康星州密尔沃基医学院,威斯康星州;电子邮件:oakhtar@mcw.edu统计总监:Ruta Brazauskas博士; CIBMTR®(国际血液和骨髓移植研究中心),威斯康星州密尔沃基医学院,威斯康星州;电话:414-456-8687;电子邮件:ruta@mcw.edu统计学家:Temitope Oloyede,MPH,CPH; CIBMTR®(国际血液和骨髓移植研究中心),威斯康星州密尔沃基医学院,威斯康星州;电子邮件:toloyede@mcw.edu
生物颗粒通常充满负电荷,而施用的颗粒可以积极或负电荷,并且由于流体变化而可以更改电荷。带电的颗粒被相反电荷的相关带电物种包围,形成了电气双层。当带电的载体和生物分子处于近距离接近时,它们相关的带电层将重叠。如果两种材料的收费相同,则会引起排斥,但是如果它们相反,则会引起吸引力。DLVO理论以Derjaguin和Landau,Verwey和Overbeek的名字命名。DLVO理论描述了两个相同电荷彼此接近的粒子之间的净相互作用。在等离子体中,离子强度使得次级最小值可能是可能的,因此相同电荷的材料将在该区域显示出净吸引力。在分离的短距离上,不同的力占主导地位,在该区域,表面性质变得重要。可能会合理地断言,由于生物分子通常是负电荷的(为了防止在生物环境中的电荷相互作用),因此最好将管理载体设计为也是负责(或至少没有积极的)。在大多数情况下,这不足以防止调理。
在这项工作中,我们探讨了曲面石墨烯结构的电子性质(称为石墨烯虫洞)的应变和曲率E ff。电子动力学是通过无质量的dirac fermion连接依赖性的费米速度来描述的。此外,该菌株还会产生伪磁性载体的潜力。对于各向同性应变张量,纺纱场的分离成分表现出超对称(SUSY)电位,具体取决于离心项和外部磁场。在没有外部磁场的情况下,应变会产生指数的振幅,而曲率会导致波函数的功率 - 极度阻尼。自旋 - 呈耦合耦合破坏了上和下旋子分量之间的手性对称性,从而导致波型在虫洞的上部或下区域的增加,即取决于自旋数。通过添加均匀的磁场,E FF电势表现出渐近二次剖面和喉部附近的自旋 - 外屏障。结果,结合状态(Landau水平)限制在虫洞喉咙周围,显示出不对称和自旋依赖性的特征。
摘要 较大的朗道能级间距源于石墨烯中准粒子的线性能量动量色散,这使得在较小的电荷载流子密度下可以有效实现量子霍尔效应。然而,在碳化硅 (SiC) 上具有发展前景的可扩展外延石墨烯需要分子掺杂,而分子掺杂在环境条件下通常是不稳定的,以补偿来自 SiC 衬底的电子转移。在这里,我们采用了有机电子器件中常见的经典玻璃封装,以使分子掺杂的外延石墨烯对空气中的水和氧分子钝化。我们已经研究了玻璃封装设备中霍尔量子化的稳定性近 1 年。经过近一年的多次热循环,霍尔量子化保持在阈值磁场之上,小于 3.5 n ΩΩ − 1 的测量不确定度,而普通未封装的器件在空气中放置 1 个月后明显显示出与标称量子化霍尔电阻的相对偏差大于 0.05%。
摘要 较大的朗道能级间距源于石墨烯中准粒子的线性能量动量色散,它允许在较小的载流子密度下有效实现量子霍尔效应。然而,在碳化硅 (SiC) 上要实现有前景的可扩展外延石墨烯,需要分子掺杂来补偿来自 SiC 基底的电子转移,而分子掺杂在环境条件下通常不稳定。在这里,我们采用有机电子器件中常见的经典玻璃封装来钝化分子掺杂外延石墨烯以抵抗空气中的水和氧分子。我们研究了玻璃封装设备中霍尔量子化的稳定性,为期近 1 年。在近 1 年的多次热循环中,霍尔量子化保持在阈值磁场之上,在 2 n ΩΩ − 1 以内,小于 3.5 n ΩΩ − 1 的测量不确定度,而普通的未封装设备在空气中放置 1 个月后明显显示出与标称量化霍尔电阻的相对偏差大于 0.05%。
摘要:纳米级铁电2D材料提供了研究曲率和应变对材料功能的影响的机会。在其中,由于室温铁电位的组合,对少数层厚度的可伸缩性以及由于2个极高的共存性,Cuinp 2 S 6(CIPS)近年来引起了近年来的巨大研究兴趣。在这里,我们通过压电响应力显微镜和光谱探索了CIPS极化的局部曲率和应变影响。为了解释观察到的行为并使2D CIPS中的曲率和应变效应脱离,我们介绍了有限的元素landau- ginzburg-德文郡模型,揭示了经受拉伸菌株和压缩应变的地区的滞后特性的强烈变化。压电力显微镜(PFM)的结果表明,弯曲会诱导CIPS中的铁晶域,并且极化 - 电压磁滞回路在弯曲和非弯曲区域不同。这些研究提供了有关曲率工程纳米电子设备的制造的见解。关键字:Cuinp 2 S 6,铁电,挠性,应变,曲率,2D材料,压电响应力显微镜W
(或溶剂混合物),可以进一步加工成可打印或可涂层的墨水。这些悬浮液的行为通常由Derjaguin – landau – verwey -overbeek(DLVO)理论描述,[3]暗示纳米片在悬浮液中的浓度具有上限,其上限在悬浮液变为不稳定的上限。[4]然而,高浓度悬浮液(墨水)对于形成渗透的粒子网络是必需的,[5]并满足高通量打印和涂层方法的风湿性要求(例如,高粘度)。无论其浓度如何,悬浮液在热力学上都是不稳定的,并且颗粒倾向于通过聚集来减少其表面能量。[6]为了降低沉积速率,必须最小化溶剂和2D材料之间的表面能量差,[3]将分散培养基的选择限制在溶解性包膜可能不适合子分类处理的一些溶剂上。在传统的墨水配方中,添加剂(例如formantant,粘合剂和流变学修饰符)用于解决上述问题,并将2D物质置换到可打印或可涂层的油墨中。[7-10]例如,需要大浓度的聚合物粘合剂(例如70 mg ml-1乙酸纤维素丁酸酯),以将涂抹油墨的粘度提高到适合筛网打印的水平。[11]由于典型的添加剂会对电子特性产生不利影响(例如,
超导技术利用超导体材料的零电阻特性,引起了人们的极大理论和实践兴趣,其应用范围涵盖量子计算、超高精度传感和量子计量等领域。这些领域的关键现象是约瑟夫森效应,即量子隧穿超电流在两个超导电极之间流动的能力。这种效应已被用于构建超导量子干涉装置 (SQUID),可用作最先进的电磁 (EM) 信号传感器。最近,几种新型 SQUID 设备已显示出在国防/医疗应用方面的巨大潜力,例如,用于捕获和分析用于通信的信号。到目前为止,电路模型已被用来模拟这些设备的性能,但这些模型在某种程度上受到限制。因此,通过利用超导性的新有效场论,如现象学金兹堡-朗道形式或非平衡统计力学方法,该项目将开发和实施一类新的微观模型。这反过来又可以用来验证更复杂设备的行为。
1个气候服务中心德国(Gerics),Helmholtz-Zentrum以下简,Fischertwiete,20095年,德国汉堡,2 IES Landau,Kaiserslautern-Landau(RPTU)(RPTU)的环境科学研究所德累斯顿大学,Helmholtzstraße10,101069德国德累斯顿,4 4 4个可伸缩数据分析与人工智能中心(SCADS.AI)Dresden/Leipzig CE1,德国5,德国5,汉堡大学,Bundesstraße55,20146 Hamburg instruct,Freecrib and free and free and free and free and free and free, Tennenbacherstr。4, 79106 Freiburg, Germany 7 Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel 8 Faculty of Agriculture/Environment/Chemistry, University of Applied Sciences Dresden, Pillnitzer Platz 2, 01326 Dresden, Germany 9 Institute for Meteorology, Leipzig University, Stephanstr.3,04103德国莱比锡10号商学院,挪威东南部,邮政信箱4,3199 Borre,挪威11号,挪威1199 ForschungszentrumjülichGmbh,fürbiio-biio- geowowoSenschaften Institutfürbiosenschaften,agraplyschaften,agrapphäre(ibg-3)德国12个自然资源与生命科学大学造林研究所,维也纳(Boku),奥地利,奥地利13 Eberswalde森林能力中心(LFE),Landeskompetenzzentrum forst eberswalde(LFE)技术,波兹南生命科学大学,UL。1,35390 Giessen,德国23环境科学学院,水文与气象研究所,气象学主席,CE2 TechnischeUniversitätDresden,Pienner Str。1,35390 Giessen,德国23环境科学学院,水文与气象研究所,气象学主席,CE2 TechnischeUniversitätDresden,Pienner Str。wojska polskiego 28,28,60-637波兰Poznan,15 15气象与气候研究对流层研究所(IMKTRO),卡尔斯鲁希技术研究所(KIT),Karlsruhe,德国Karlsruhe,德国16 Potsdam Impact for Actim for for S. Potsdam Impact for Actor for Seclocibe Potsdam, Germany 17 Faculdade de Ciências, Instituto Dom Luiz (IDL), Universidade de Lisboa, 1749-016, Lisbon, Portugal 18 CEF – Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Lisbon, Portugal 19 Institut Pierre-Simon Laplace, CNRS, 75005 Paris,法国20大气与气候科学研究所,苏黎世,苏黎世8092,瑞士苏黎世21号地理和地理学研究所(IFGG),卡尔斯鲁赫技术研究所(KIT),德国Karlsruhe,德国Karlsruhe 2223,01737德国Tharandt
