摘要 — 基于脉冲无线电超宽带 (IR-UWB) 技术的传感器网络在需要精确定位和强大通信链路的领域获得了广泛关注。在航天器和发射器中,这些网络可用于将传感器连接到中央机载计算机或提供不同子系统之间的通信链路。这有助于减少线束,而线束是影响整个航天器质量和设计复杂性的关键因素。本文介绍了一种基于低功耗 IR-UWB 传感器节点的发射器安装多摄像头系统的应用。结合 IEEE 802.15.4 标准的改进型高吞吐量 MAC 层,它能够提供每秒多帧的更新速率,而传统的传感器网络系统则需要半分钟才能传送一帧。此外,由于宽带传输的性质,它不会干扰运载火箭的关键遥控/遥测无线电链路。
在竞争激烈的新太空行业中,独创性,可靠性和成本效益是最高因素。当Latitude开始创建其尖端的小卫星发射器Zephyr时,他们认识到选择正确的编程语言和开发工具的重要性来支持他们的努力。评估了许多候选者后,纬度定居在ADA及其正式可验证的Spark子集上。ada和Spark被认为对声音软件工程实践有最佳的支持,从而降低了生命周期成本,同时满足实时嵌入式系统性能和可预测性要求。根据他们的成功经验,Latitude计划扩大对ADA和SPARK在未来项目上的使用,并将这些技术视为关键推动者。
本文研究了一种可能的解决方案,以采购未来太空探索任务所需的推进剂。这项研究检查了使用电磁发射器(EML)将用于推进剂生产的原材料从月球南极到NASA的Lunar Gateway的可行性。这个提议的空间站位于近汇度光环轨道(NRHO)的月球中,是NASA ARTEMIS计划的关键部分。便宜有效地从表面冰上采购月球氢将使该计划的成功和未来对太阳系的探索有益。本研究调查了月球EML有效载荷的发射要求。Agi Inc.的系统工具套件(STK)用于计算拦截网关所需的启动方位角,高度,幅度,时期和行程持续时间。该模型评估了有效载荷以及网关的径向,交叉轨道和轨道位置和速率,以确定它们在集合处的相对位置和速度。这项研究的结论表明,从Lunar South Pole进行一次发射是可行的,并以可变的发射条件为目标。提出了支持我们假设的证据,这表明可能无法与Rendezvous的空间站的状态向量相匹配。有效载荷将需要额外的推力能力,本文还探讨了这些建议。
摘要 ArianeWorks 是由法国国家空间研究中心和阿丽亚娜集团发起的创新平台,它加速了 Themis 的开发,Themis 是一种由液氧和生物甲烷推动的低成本可重复使用的火箭级演示器,为 2030 年的欧洲发射系列铺平了道路。根据其股东的生态设计愿景,ArianeWorks 在 Themis 计划中启动了生态设计战略的实施。在此背景下,本研究介绍了基于半可重复使用发射器的发射服务的生命周期评估,该发射器源自 Themis 并在圭亚那航天中心运行,该评估发生在 Themis 的早期设计阶段。该分析意味着开发一个特定的框架来解释下级的可重复使用性,需要使用经过调整的功能单元、在生命周期中引入新的阶段以及特定的参数化来描述其复杂性。本文接着进行了敏感性分析,以确定影响的主要驱动因素并支持设计权衡分析,然后估计最大可信缓解潜力。然后,概述了一种评估可重复使用性可能带来的环境效益的方法,并为所研究的发射服务提供了初步结果。影响评估结果证实,结构和推进剂的生产对阿丽亚娜火箭的生命周期影响最大。由于延长寿命阶段会产生额外影响,因此低级火箭的回收和翻新也发挥着重要作用,但也使一些影响减少成为可能,这些影响可以通过明确的惯例来隔离。跨大西洋运输阶段或测试和加油期间的推进剂消耗会造成不可忽略的影响,这些影响可以通过采用节俭的方法或技术创新来减轻。总体而言,该研究强调,与基线相比,对气候变化和资源枯竭的总影响可能减少约 30-80%。然而,尽管人们普遍认为可重复使用性可以减少生命周期影响,但研究表明,实际情况要复杂得多,因为从发射器的环境性能比较中得出的结论取决于惯例、市场参数、运营方案和环境影响类别。对于所研究的发射服务,结果表明,虽然可重复使用性可能会减少对资源枯竭的影响,但它可能会增加对气候变化的影响。此外,可重复使用性的任何环境效益都可能被这项技术所促进的全球太空活动的增长完全抵消,从而导致适得其反的反弹效应。本研究强调,由于采用生态设计方法,影响可能会减少,这将减轻这种影响。关键词:环境影响、生命周期评估、生态设计、发射器、可重复使用性、方法论 首字母缩略词/缩写
– Solar Wind: Solar Orbiter, Lagrange L5, SMILE (built by NSSC, China) – Planetary environments: Cassini, Venus and Mars Express (built by SWRI), Mars 96 (launcher failed), AMPTE-UKS – Magnetospheric missions: Cluster, Double Star, Polar, CRRES, STRV, QB50 – Cometary studies: Giotto • Highly miniaturised particle sensors
矿石和更多的立方体正在进入太空,而太空的民主化正在加速。确保所有人都可以真正进入,包括非空间国家,联合国外在航天局(UNOOSA)(UNOOSA)和意大利公司Avio S.P.A.为联合国成员国提供了利用Vega C Launcher的机会。Vega C计划是在所有计划的卫星开发轨道下进行的动手机会,它为Vega C Launcher上的所有计划提供了无需成本的3个单位(3U)立方体卫星(CUCESAT)启动插槽。这项合作于2019年9月在联合国大会宣布,并于2020年10月在Covid-19大流行中开放。通过该计划,Unoosa和Avio旨在提高人们对小型卫星在可持续发展和能力建设中的作用,以实现太空活动的能力,并弥合国家之间的空间差距。
可维护性 ................................. 最大维护时间 ........................ 弹射器系统可维护性 ........................ 弹射器系统最大维护时间 .......... 维护计划 ................................. 组织维护 ........................ 组织维护任务 ........................ 中级维护 ........................ 中级维护任务 ........................ 工厂维护 ........................ 工厂维护任务 ........................ 互换性 ........................ 识别和标记 ........................ 回收、原始和再生材料 ........................ 详细要求 ................................. 导弹装载 ................................. 支援设备 ................................. 发射器结构 ................................. 发射器接口对准 ........................ 悬挂和释放系统 ................................. 闩锁机制设计 ................................. 独立自锁 ................................. 手动闩锁 ................................. 从属解锁 ................................. 释放机制 ................................. 手动释放 ................................. 机电安全联锁 ................................ 导弹传感 ................................. 保险系统 ................................. 防摇支架
2022 年 7 月,中科院航天所研制的力建一号/中科一号甲 (ZK-1A) 火箭成功首飞。该运载火箭采用四级固体火箭(三级第一级:P71/P35/P10),升空质量 135 吨,高度 31 米,主直径 2.65 米,有效载荷能力 1500 公斤,可在 500 公里高度的 SSO 轨道上运行。中国航天科技集团公司研制的类似运载火箭捷龙三号或智龙三号已于 2022 年 12 月在驳船发射台上发射。它使用相同的电机。同月,中国航天科工集团公司研制的 KZ-11 运载火箭首飞,该火箭部分源自 DF31/41 导弹。该运载火箭升空质量 78 吨,直径 2.2 米,基于新型 P45 碳纤维弹壳第一级。不幸的是,第三级固体火箭发动机在首飞期间出现故障。
欧洲已启动多个大型合作项目来解决这些问题。一方面,有些计划专注于开发经济高效的小型卫星发射系统。SMILE 项目 1 开发了一种经济高效的欧洲小型卫星发射系统(目标价格低于 50,000 欧元/公斤)以及一个欧洲地面设施,用于这些发射系统。该项目于 2016 年 1 月 1 日启动,并于 2018 年 12 月 31 日结束。ARION 项目 2 将于 2020 年 1 月 31 日完成,这是一项为期两年的计划,旨在提出革命性的可重复使用火箭,用作微型发射器和亚轨道运载火箭。该项目的主要目标是完成 ARION 亚轨道运载火箭的设计、开发发射基础设施、使可重复使用的运载火箭在太空中合格,并在欧洲实现该技术的商业化。