C. T. Sims^(书面讨论)— 您的疲劳蠕变研究是在 650°C (1200°F) 和 815°C (1500°F) 下进行的,持续时间较长。您表示,无论是在测试之前还是之后,都没有对这两个温度变量进行金相检查。根据我的经验,IN 625 是一种(真正)不稳定的材料。在 650 至 725°C (1200 至 1300°F) 左右的温度以上,合金开始析出大量片状相,通常来自晶界。这些片状相主要是 η 相(NIsCb、Mo),但也会出现 Laves 相和 μ 相。这些相会从溶液中去除强化元素,促进裂纹的萌生,并直接帮助裂纹在载荷下扩展,从而大幅降低蠕变和断裂性能。因此,很明显,您在 815°C (1500°F) 下的测试结果(“815°C 下的拉伸保持时间对循环寿命有(显著)影响;压缩保持时间对疲劳寿命也有破坏性影响——在 815°C 的低应变水平下非常明显;- 等等”)直接由大量 eta. Laves 和 mu 的沉淀引起。有私人公司文件和 ASTM 文件警告不要在这些条件下使用 IN 625,因为合金会退化。简而言之,作者未能获得有关 IN 625 的基本知识,并且研究未能对测试材料进行简单的金相分析,导致了大量
Inconel 625 是一种镍基高温合金,由于其耐腐蚀性以及良好的机械性能(如高温下的强度和抗热蠕变性),广泛应用于航空航天、海洋和化学应用[1, 2]。该合金以镍基为主,主要合金元素含量较高,包括:Cr、Mo、Nb、Ta、Fe。 Inconel 625 中的主要相是面心立方 γ 相,此外,根据位置、温度和化学成分的不同,还有 γ”、Ni 2 (Cr,Mo)、δ、碳化物、μ 和 laves 相[3]。用 Inconel 625 制造具有复杂形状的零件始终是一个巨大的挑战,因为 Inconel 625 具有低导热性、差的可加工性和高硬度[4, 5]。然而,Inconel 625 具有良好的可焊性,是高能加工方法的首选[6]。 3D 金属打印工艺是利用逐层金属沉积的方法根据数字模型(CAD 模型)制造零件的过程 [7, 8]。在过去的十几年中,利用金属粉末和激光束作为热源的金属3D打印工艺可以生产形状复杂的金属零件,不仅在基础研究而且在工业应用中得到了广泛的应用[9,10]。
摘要:高熵合金的设计原理是将多种化学元素以相等或接近相等的比例混合,以创建具有独特性能的新合金,例如高强度、延展性和耐腐蚀性。高熵合金的某些性能可以通过引入新的掺杂元素来调整,掺杂元素的选择需根据工作条件而定。研究了 Ti 掺杂对高熵合金 CoCrFeMoNi 微观结构、显微硬度和弹性模量的影响。微观结构分析表明,合金的核心结构由面心立方 (FCC) 和体心立方 (BCC) 相组成,同时形成了 Laves 相。Ti 的加入使合金晶粒细化,降低了枝晶间和枝晶区域之间的 Mo 浓度差。Ti 掺杂的结果是,合金的显微硬度从 369 HV 0.2 增加到 451 HV 0.2。 Ti 掺杂使断裂强度值增加了一倍,尽管 CoCrFeMoNi 合金的弹性模量没有发生显著变化。
摘要:高熵合金 (HEA) 由 5–35 at% 的五种或更多种元素组成,具有高配置熵,不形成金属间化合物,具有单相面心立方结构或体心立方结构。特别是,耐火高熵合金 (RHEA) 基于在高温下具有优异机械性能的耐火材料,在室温下具有高强度和硬度,在低温和高温下具有优异的机械性能。在本研究中,使用直接能量沉积 (DED) 沉积了 Ti-Nb-Cr-V-Ni-Al RHEA。在 Ti-Nb-Cr-V-Ni-Al 的微观结构中,σ、BCC A2 和 Ti2Ni 相似乎与相图中预测的 BCC A2、BCC B2 和 Laves 相不同。该微观结构类似于铸造的 Ti-Nb-Cr-V-Ni-Al 的微观结构,并具有构造的细晶粒尺寸。发现这些微观组织的生长是由于 DED 工艺,该工艺具有快速凝固速度。细小的晶粒尺寸导致高硬度,测量的 Ti-Nb-Cr-V-Ni-Al 显微硬度约为 900 HV。此外,为了分析由耐火材料组成的 Ti-Nb-Cr-V-Ni-Al 的热性能,通过预热试验分析了热影响区 (HAZ)。由于 Ti-Nb-Cr-V-Ni-Al 的热扩散率高,HAZ 减小了。
摘要:对采用选择性激光熔化 (SLM) 技术制备的 Inconel 718 (IN718) 高温合金样品进行不同的加热循环,并研究其微观结构特征。选定的加热速率范围从 10 ◦ C / min 到 400 ◦ C / s,代表焊接增材制造试件热影响区 (HAZ) 中的不同区域。采用差示热分析 (DTA)、高分辨率膨胀仪以及激光共聚焦和电子显微镜相结合的方法研究了第二相的析出和溶解以及微观结构特征。为此,从与支撑接触的底部到顶表面研究了增材制造试件的微观结构。结果表明,在高加热速率下,γ”和δ相的溶解延迟并转移到更高的温度下。微观结构分析表明,枝晶间区域的 Laves 相在靠近样品表面的特定区域分解。确定这些区域的厚度和面积分数与施加的加热速率成反比。提出了一种可能的机制,该机制基于加热速率对枝晶间区域和枝晶核心中 Nb 扩散的影响,以解释观察到的微观结构变化。
从经济角度来看,耐久性是热冲压模具的关键因素。通过沉积新材料而不是更换来翻新模具是一种降低成本的有效方法。为此,通过定向能量沉积的方式将一种新开发的马氏体时效钢 (NMS) 熔覆在热作工具钢上。经过优化的回火后,对熔覆的 NMS 进行高温暴露以检查抗软化性能。利用光学显微镜 (OM)、X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、俄歇电子能谱 (AES) 和透射电子显微镜 (TEM) 的组合,系统地表征了材料的微观结构演变。熔覆钢中的沉淀物被鉴定为 Laves 相。该相的粗化被认为是钢在高温下热软化的主要原因。还使用修订的 Langer-Schwartz-Wagner (LSW) 模型模拟了粗化行为,该模型与实验观察结果非常吻合。此外,成功应用了沉淀强化数学模型来评估钢的软化行为。该模型可用于预测所研究的工具钢在高温使用过程中的硬度/强度变化。2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
在 Inconel 718 的激光定向能量沉积 (L-DED) 中,所制造部件的微观结构在很大程度上取决于所应用的工艺参数和由此产生的凝固条件。大量研究表明,工艺参数沉积速度和激光功率对微观结构特性(如枝晶形态和偏析行为)有重大影响。本研究调查了当线质量(从而导致的层高)保持不变时,这些工艺参数的变化如何影响微观结构和硬度。这使得能够对使用相同层数但工艺参数截然不同制造的几何相似样品进行微观结构比较。这种方法的好处是,所有样品的几何边界条件几乎相同,例如特定于层的构建高度和导热横截面。对于微观结构分析,应用了扫描电子显微镜和能量色散 X 射线光谱,并以定量方式评估结果。沿堆积方向测量了微观结构特征,包括一次枝晶臂间距、沉淀 Laves 相的分数和形态以及空间分辨的化学成分。使用半经验模型,根据一次枝晶臂间距计算发生的冷却速率。应用了其他研究人员使用的三种不同模型,并评估了它们对 L-DED 的适用性。最后,进行了显微硬度测量,以对材料机械性能的影响进行基线评估。
在开发用于耐热和抗蠕变合金的线材+电弧增材制造 (WAAM) 工艺时,结构由镍基高温合金 Inconel 718 (IN718) 和 Inconel 625 (IN625) 构建。在本文中,使用等离子转移电弧工艺在这两种高温合金中沉积壁结构。在光学和 SEM 下分析微观结构;两种合金均显示出具有长柱状晶粒的典型树枝状结构,合金之间差异不大。研究结果表明,结构包括合金元素的明显偏析,具有潜在的金属间相,例如合金中还发现了 Laves 相和 δ 相,这表明 Nb 和 Mo 在晶界和树枝状区域偏析明显更多。这些合金还经过了室温机械测试,此外,IN625 样品在固溶和时效处理后进行了测试。硬度测量表明,与固溶状态下的锻造合金相比,WAAM 工艺通常可使材料硬度增加约 10%。与沉积状态相比,IN625 的热处理样品硬度增加了约 6%。IN625 的伸长率显示出更大的值。总体而言,IN718 的强度高于 IN625,而伸长率较低。对两种合金及其文献中所述的最大 UTS 和 YS 值进行比较后发现,WAAM 制造的 IN718 和 IN625 在沉积状态下可达到最大 UTS 的一半多一点,无需后处理。在 IN625 中测试的热处理工艺略微缩小了 UTS 性能的差距 3.5%。
