摘要:改善复合电池电极需要精细控制活性材料和电极配方。电化学活性材料通常以微米大小的颗粒的形式出现,通过与周围的导电网络相互作用,可以实现其作为能量交换储层的作用。这里制定了网络演化模型,以解释这些颗粒的电化学活性与机械损伤之间的调节和平衡。通过统计分析LINI 0.8 MN 0.1 CO 0.1 CO 0.1 O 2的阴极中的数千个颗粒,我们发现局部网络异质性导致早期周期中的异步活动,然后粒子组件朝同步行为移动。我们的研究指出了单个颗粒的化学机械行为,并可以更好地设计导电网络,以优化操作过程中所有颗粒的实用性。
摘要:锂镍锰钴(LiNi x Co y Mn z ,NCM)复合材料在先进电子器件和材料/合金中的应用十分广泛,其杂质成分分析是评价其质量的重要领域。本文提出了采用电感耦合等离子体发射光谱法(ICP-OES)测定NCM复合材料中硫的方法。研究了Si、Fe、Mn、Mg、Ca、Ni、Cr及主基体共存杂质的影响。在优化的条件下,硫在0~10 mg/L(±0.9999)范围内呈现良好的线性关系,加标回收率为98.11~102.07%,RSD为3.69%,共存杂质含量低于5.0%对硫的测定无明显干扰。该方法可以作为NCM复合材料中痕量硫含量的可靠测定。
在过去的五年中,Lini X Mn Y Co Z O 2的研究已大大转向更高的能量密度。达到如此高密度的一种方法是增加Ni含量,并靶向所谓的“ Ni-Rich”位置,从622起(占NI的60%,占MN和CO的20%),以180 mAh/g的特定容量为180 mAh/g,并倾向于811个组成,以210 mAh/g的材料为210 mAh/g。减少钴含量可以增加能量密度和伏特,并降低电池成本和可持续性。Astrabat在高压(> 4.45 V vs li/li+)和高镍NMC(NMC811)上探讨了NMC622稳定的稳定性。NMC等级是针对项目中开发的氟植物电解质和电池的核心档位设计的,考虑到3D制造细胞所需的墨水喷射打印过程。
z电子邮件:anastasiia.mikheenkova@kemi.uu.se摘要锂离子电池(LIB)已成为转向电动运输的基石。试图减少生产负载并延长电池寿命,因此必须了解最先进的Libs中的不同降解机制。在这里,我们分析了循环中的运行温度和电荷(SOC)范围如何影响汽车21700级电池的老化,该电池从Tesla 3远程2018远程电池组中提取,其中包含Lini X Co Y Al Z O 2(NCA)的正电极和负电极,并且含有SIO X -C。在给定的研究中,我们使用电化学和材料分析的组合来了解细胞中的降解来源。在此表明,锂库存的损失是细胞中的主要降解模式,在负电极上的材料损失是由于在低SOC范围内循环时会有重要的贡献者。降解在升高的温度下占主导地位,循环到高SOC(超过50%)。图形摘要
锂离子电池(LIB)由于高能密度而引起了多年的高级电源和能源储能设备的极大关注。随着对LIB的大量可逆能力,高安全性和长期稳定性的迅速增长,近几十年来,更多的探索集中在开发高性能阴极材料上。碳基材料是自由度高的电导率,较大的表面积和结构机械稳定性,是LIB的最有前途的阴极修饰材料之一。此功能综述系统地概述了Libs的碳基材料的显着进步。首先代表了使用碳涂层的阴极材料的常用合成方法和最近的研究进展。然后,总结了LiCoo 2,Lini X Co Y Al 1-X-Y O 2和LifePo 4阴极材料的最新成就和挑战。此外,还讨论了对阴极材料的性能的不同基于碳的纳米结构的影响。最后,我们总结了碳基材料对LIB的阴极材料设计的挑战和观点。
在锂负极上形成疏锂无机固体电解质界面 (SEI) 并在正极上形成正极电解质界面 (CEI) 对高压锂金属电池是有益的。然而,在大多数液体电解质中,有机溶剂的分解不可避免地会在 SEI 和 CEI 中形成有机成分。此外,有机溶剂由于其高挥发性和易燃性,通常会带来很大的安全风险。本文报道了一种基于低熔点碱性全氟磺酰亚胺盐的无有机溶剂共晶电解质。锂负极表面的独特阴离子还原产生了一种无机的、富含 LiF 的 SEI 膜,该膜具有很强的抑制锂枝晶的能力,这一点可以从 0.5 mA cm −2 和 1.0 mAh cm −2 时 99.4% 的高锂电镀/剥离 CE 以及 80°C 下全 LiNi 0.8 Co 0.15 Al 0.05 O 2 (2.0 mAh cm −2 ) || Li (20 μ m) 电池的 200 次循环寿命看出。所提出的共晶电解质有望用于超安全和高能锂金属电池。
摘要:全固态电池(ASSB)的实际应用需要在低压下可靠运行,这仍然是一个重大挑战。在这项工作中,我们研究了由不同粒径固态电解质(SSE)组成的正极复合微结构的作用。由 LiNi 0.8 Co 0.1 Mn 0.1 O 2(NCM811)和细颗粒 Li 6 PS 5 Cl(LPSC)制成的复合材料在 NCM811 颗粒表面显示出更均匀的 SSE 分布,确保了紧密接触。此外,该复合材料的曲折度降低,从而增强了锂离子传导。这些微观结构优势可显着降低电荷转移电阻,有助于抑制低压条件下循环过程中的机械变形和电化学降解。因此,细 LPSC 正极复合材料在 2 MPa 的中等电堆压力下表现出增强的循环稳定性,优于粗 LPSC。我们的发现证实了微结构设计在实现低压条件下高性能 ASSB 运行中的重要作用。
作为原始的NMC阴极,Lini 1/3 MN 1/3 CO 1/3 O 2(NMC-111),也称为“ 1-1-1”,已被开发为最成功的锂离子阴极之一。随后,NMC家族通过N X M Y C Z阴极的组成增长(X:Y:Z = 4:3:3:3:3:3:3:3:3:3:3:2,6:2:2:2:2,8:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:y + y + z = 1)。满足对未来汽车市场(电动,混合电动和插电式混合动力汽车)的要求,朝着NMC朝着高镍含量(> 70%)的NMC迈进,高度高度的高度速度超过200 mH/g,电压和电压约为3.8 vs.3.8 V vs.li/li/li +不可避免地。然而,挑战是,NMC中较高的镍含量加剧了与表面相关的降解,包括表面相变,过渡金属溶液,晶格氧释放和电解质分解。因此,近年来,电池制造商正在积极地从多晶体过渡到单晶镍富含镍的材料,以减少内部表面(图1)。
图4 7 li MAS光谱0.5 mn 0.5 o 2在环境大气中存储了2个月,而(a)hahn Echo大部分显示了来自主要阴极的大部分阴极宽磁性宽片的广泛共振,其中参数磁性宽广的宽敞宽广的分辨率预测了分辨率。顶部的小边带来自空气中电极表面形成的Li 2 Co 3。可以在(b)中以单个脉冲激发(如死亡时间内的广泛成分衰减)更好地解析dimamagnetic表面物种,这表明侧带歧管的显着广度,而纯Li 2 Co 3(c)中不存在。纵向松弛时间为paragnetic Bulk Li的纵向松弛时间为4 ms,纯Li 2 CO 3为200 s,在顺磁阴影底物上形成时,较短至1 s。测量在11.8 T(500 MHz)光谱仪上进行14 kHz。改编自参考。42经许可。
摘要:几种高级电解质(主要是基于乙醚的)在高能密度锂金属电池中表现出了有希望的电化学性能。这项工作评估了其在滥用条件下的热稳定性,以阐明其安全限制与通常在锂离子电池中使用的碳酸盐电解质相比。与LINI 0.8 MN 0.1 CO 0.1 O 2阴极和超高电压(≤4.8V)和温度(≤300°C)的LI-Metal阳极一起评估电解质稳定性。通过等温微量钙化和差异扫描量热法监测热量释放的发作和程度。大多数基于醚的电解质显示出对碳酸盐电解质的热弹性提高。虽然极端电压严重破坏了基于以太的电解质的稳定,但基于磷酸盐的局部高浓度电解质在碳酸盐电解质上表现出改善的稳定性,即使在60°C下,在第一个电荷过程中的热分析也可能不足以使稳定的稳定性稳定地识别出较长期的电解质,但这些电解质的长期稳定性不足,但这些均可及时的稳定性。电解质设计。t