抽象的智能移动性和自动驾驶汽车(AV),必须非常精确地了解环境,以保证可靠的决策,并能够将公路部门获得的结果扩展到铁路等其他领域。为此,我们基于Yolov5引入了一个新的单阶段单眼3D对象检测卷积神经网络(CNN),该卷积神经网络(CNN)致力于公路和铁路环境的智能移动性应用。要执行3D参数回归,我们用混合锚盒替换了Yolov5的锚点。我们的方法有不同的模型大小,例如yolov5:小,中和大。我们提出的新模型已针对实时嵌入DED约束(轻巧,速度和准确性)进行了优化,该模型利用了被分裂注意的改进(SA)卷积所带来的改进(称为小型分裂注意模型(SMALL-SA)。为了验证我们的CNN模型,我们还通过利用视频游戏Grand Theft Auto V(GTAV)来引入一个新的虚拟数据集,以针对道路和铁路环境。我们在Kitti和我们自己的GTAV数据集上提供了不同模型的广泛结果。通过我们的结果,我们证明了我们的方法是最快的3D对象检测,其准确性结果接近Kitti Road数据集上的最新方法。我们进一步证明,GTAV虚拟数据集上的预训练过程提高了实际数据集(例如Kitti)的准确性,从而使我们的方法比最先进的方法获得了更高的准确性,该方法具有16.16%的3D平均均衡性精度,而硬CAR检测的推理时间为11.1 MS/rtx 3080 gpu的推理时间为11.1 s/simage。
短波式红外(SWIR)光电探测器对于许多科学和工业应用至关重要,包括监视,质量控制和检查。在近几十年中,基于有机半导体的光电检测器已经出现,证明了为宽带和窄带成像和感应场景增加实际价值的潜力,在这种情况下,诸如热预算敏感性,大面积孔径的必要性,成本考虑因素,轻量级和相结构的灵活性需求等因素优先考虑。现在已经认识到,有机光电探测器(OPD)的性能,尤其是它们的特定检测率,最终受到陷阱状态的限制,陷阱状态普遍存在于无序的半导体中。这项工作采用了一种利用这些中间隙状态来特定创建SWIR照片响应的方法。为此,这项工作引入了在批量异质结(BHJS)光电二极管中“陷阱掺杂”的一种反直觉方法,其中有意将少量的来宾有机分子故意纳入半强化供体中:受体宿主系统。遵循这种方法,这项工作证明了可见的至静宽宽带OPD的概念验证,在关键光电探测器指标中接近(并在某种程度上,甚至超过)最先进的性能。陷阱掺杂方法是,即使目前只有概念验证,它广泛适用于各种光谱窗口。使用将限制变成功能的非常规策略来进行工程光进行的新模式。
摘要:越来越多地,正在用病毒介导的基因疗法治疗视网膜病理。能够以光特定针对视网膜病理区域的病毒转基因表达,我们确定了视网膜组织的体内光活化基因表达para-digm。基于诱导型Cre/Lox系统,我们发现乙基雌二醇是他莫昔芬的合适替代品,因为乙基雌二醇更适合通过光敏保护化合物(即“笼子”)修饰。在计算机结合研究中支持了突变的人雌二醇受体的乙基甲基二醇作为配体的鉴定,该研究表明笼中乙基雌二醇的结合降低。用依赖性的TDTOMATO报告基因转基因注入双转基因GFAP-CREERT2小鼠的眼睛中,然后用450 nm的光照射。光活化显着增加了视网膜TDTOMATO表达。因此,我们展示了为眼睛开发靶向的,光介导的基因治疗的第一步。
摘要 - 该论文引入了针对资源约束物联网(IoT)环境量身定制的轻巧,有效的键合功能,利用了Parabola Chaotic Map的混乱属性。通过将混沌系统的固有不可预测性与简化的加密设计相结合,提出的哈希功能可确保可靠的安全性和低计算开销。通过基于SRAM初始值将其与物理不封次函数(PUF)集成来进一步增强该函数,该功能可作为设备特异性键的安全且耐篡改的来源。对ESP32微控制器的实验验证证明了该函数对输入变化,特殊统计随机性以及对加密攻击的抗性的高度敏感性,包括碰撞和差分分析。在不同条件下,在关键产生中,平均比重变化的概率接近理想的50%和100%的可靠性,该系统解决了关键的物联网安全挑战,例如克隆,重播攻击和篡改。这项工作贡献了一种新颖的解决方案,该解决方案结合了混乱理论和基于硬件的安全性,以推动物联网应用程序的安全,高效和可扩展的身份验证机制。
对浸润产品的需求不断上升,这使谷胱甘肽是一种具有抗氧化特性和黑色素发生调节作用的三肽,将其作为对常规剂的潜在更安全的替代品的重点。此叙述性评论旨在评估口服,局部和静脉注射谷胱甘肽在皮肤亮化疗法中的功效和安全性。口服给药显示出明显但可变的黑色素水平降低,副作用有限。局部配方可提供优质黑色素的减少和皮肤质地改善,但可持续性变化。静脉注射谷胱甘肽虽然具有快速作用,但与严重的安全问题有关,例如过敏反应和肝毒性,由于缺乏标准化的剂量方案而进一步加剧了。当前的证据支持谷胱甘肽作为脱位剂的潜力,但强调了对严格的大规模临床试验的需求,以建立长期安全性,最佳剂量和标准化应用。在获得此类数据之前,临床医生和消费者应谨慎行事,以确保安全有效的皮肤病学实践,尤其是在静脉内使用。
在临床和临床前研究中,对MF的定量评估仍然是一个重大挑战,受到技术局限性和疾病固有的可变性的阻碍(Bengel等,2023; Karur等,2024; Barton等,2022)。心脏纤维化分析使心脏的小尺寸和缺乏提供足够分辨率的方法变得复杂(Galati等,2016)。组织学染色技术,例如Masson的三色染色,30
摘要:新生儿重症监护病房(NICU)中的噪声和高光照明被认为是压力源,可以改变脆弱的早产儿的幸福感和发展。这项前瞻性观察性研究评估了NICU中非常早产儿(VPI)的疼痛行为(VPI)和声音峰(SP)和光水平变化(LLV)。,我们在10 h的孵化器中测量了26 VPI的自发发生的SP和LLV。使用“ douleur aigue du nouveau-né”(DAN)量表通过视频录制分析了他们的行为响应。根据刺激的类型,我们比较了环境刺激之前和之后的最大DAN分数和得分≥3的VPI的百分比。总共分析了591个SP和278个LLV。与基线相比,5至15 dBA和LLV的SPS显着提高了DAN分数。两种压力源的DAN评分的发生≥3增加,总共16%的SP和8%的LLV导致了量化疼痛行为。总的来说,这项研究表明VPI对SP和LLV敏感,对SPS的敏感性更高。在VPIS脑发育的背景下,应进一步评估导致噪声和光变化引起的疼痛行为的机制。我们的结果提供了进一步的参数,以优化新生儿单位的NICU感觉环境,并适应VPI的期望和感官能力。
气味受体(OR)是昆虫外围嗅觉系统的主要参与者,使其成为通过嗅觉破坏来控制害虫的主要目标。在化学生态学背景下用于识别或配体的传统方法依赖于分析昆虫环境中存在的化合物或筛选具有类似已知配体的结构的筛选分子。但是,这些方法可能是耗时的,并受其探索有限的化学空间的约束。最新的理解或结构理解的进步,再加上蛋白质结构预测的科学突破,促进了基于结构的虚拟筛选(SBVS)技术在加速配体发现中的应用。在这里,我们报告了SBV在昆虫ORS上的首次成功应用。我们开发了一种独特的工作流程,结合了分子对接预测,体内验证和行为分析,以鉴定非热门受体的新行为活性挥发物。这项工作是概念证明,为将来的研究奠定了基础,并强调了对改进的计算方法的需求。最后,我们提出了一个简单的模型,以基于以下假设来预测受体响应光谱,即结合袖珍特性部分编码了此信息,如我们对spodoptera littoralis ors的结果所建议。
皮质失明是一种神经系统疾病,是由于枕叶中的基因藻氨酸途径破坏,导致双侧视力丧失[1],并以正常的基础镜头,眼部运动和瞳孔功能为特征[1]。这是枕皮质损伤[2]因不同病因而引起的失明的重要原因。皮质失明在存在/不存在视觉功能,严重程度,视觉不足的意识以及在不同患者中恢复功能的幅度方面有所不同[3]。尽管由于脑缺血和缺血,但皮质失明可能是燃烧的继发性,但很少有报道。燃烧的机制可能是通过导致流向大脑的血液流动的破坏,从而导致脑部灌注灌注,这可能会导致视觉皮质区域的参与导致皮质失明。尽管皮质失明可能在脑外科手术中很常见,头部创伤[4],但中风等等,但在烧伤患者中非常罕见。