片上纳米量波导传感器是一种有前途的解决方案,用于使用中红外(miR)区域中的吸收菌印刷物进行微型化和无标记的气体混合物检测。然而,由于吸收光谱的重叠,有机气体混合物的定量检测和分析仍然具有挑战性,报道较少。在这里,将人工智能(AI)辅助波导“光子鼻”作为MIR中的气体混合物分析的增强传感平台提出。凭借支持的波导设计和机器学习算法的帮助,将二元有机气体混合物的miR吸收光谱与任意混合率区分开,并分解为单组分光谱以进行浓度预测。结果,实现了19个混合比的93.57%的分类。此外,气体混合物频谱分解和浓度预测显示,平均根平方误差为2.44 vol%。这项工作证明了MiR波导平台的更广泛的感测和分析能力的潜力,用于多个有机气体成分,用于MIR片段光谱。
社会。最重要的是,迄今为止,针对这一系列致残或限制生命的疾病,获得许可的治疗方法极其有限(Chinnery,2015;Viscomi 等人,2023)。线粒体疾病的治疗方法包括对症治疗以改善生活质量或延长寿命,以及基因治疗以减少异质体并治愈细胞生化缺陷。对症治疗包括操纵线粒体的细胞含量、通过雷帕霉素诱导线粒体周转、恢复 NAD + 水平、调节活性氧的产生和氧化应激等(Russell 等人,2020)。基因治疗包括直接编辑线粒体基因组、基因替代疗法(Silva-Pinheiro 等,2020;Ling 等,2021)和线粒体移植疗法(Green field 等,2017)。基因编辑技术作为一种潜在的治疗选择,在过去十年中已在核遗传疾病的治疗中得到广泛研究(Sharma 等,2015;Nelson 等,2016;De Ravin 等,2017;Zheng 等,2022),越来越多的临床试验正在进行中(Arabi 等,2022)。然而,由于缺乏有效的工具来操纵 mtDNA( Silva-Pinheiro 和 Minczuk,2022 年),其在由 mtDNA 突变引起的线粒体疾病中的意义受到阻碍,除非通过锌指融合( Minczuk et al., 2008; Gammage et al., 2014; Gammage et al., 2016a; Gammage et al., 2016b; Gammage et al., 2018b )或 TALE 融合的 fokI 核酸酶( Bacman et al., 2013; Reddy et al., 2015; Bacman et al., 2018; Pereira et al., 2018; Yang et al., 2019)或 TALE 融合的 fokI 核酸酶( Bacman et al., 2013; Reddy et al., 2015; Bacman et al., 2018; Pereira et al., 2018; Yang et al., 2019)切割和消除有害的 mtDNA 拷贝。线粒体DNA碱基编辑技术目前已发展成为生物技术中最常用的编辑技术之一(Pereira et al., 2018),以及基于TALE系统的单体酶(Pereira et al., 2018)。近年来,基于TALE的线粒体DNA碱基编辑工具陆续被引入,第一种是DddA衍生的胞嘧啶碱基编辑器(DdCBE)(Mok et al., 2020),它为按预期操纵线粒体DNA打开了大门。DddA系统来源于伯克霍尔德菌,DdCBE由两半无毒的TALE融合分裂DddA(DddA-N和DddA-C)组成,通过将这两半分裂的DddA重新组装成功能性脱氨酶,催化间隔区域内的胞嘧啶脱氨。目前,DdCBE 已成功应用于植物 (Kang et al., 2021)、哺乳动物细胞 (Mok et al., 2020)、斑马鱼 (Guo et al., 2021)、小鼠 (Lee et al., 2021; Lee et al., 2022a; Guo et al., 2022)、大鼠 (Qi et al., 2021) 甚至人类生殖细胞 (Wei et al., 2022a; Chen et al., 2022) 的线粒体 DNA 编辑。在我们的实验室中,它还已成功用于小鼠早期卵泡阶段的有效生殖系线粒体 DNA 编辑(已提交数据)。不幸的是,它在挽救线粒体疾病方面的应用极其罕见,无论是用于治疗研究(Silva-Pinheiro 等人,2022 年)还是用于临床试验(Chen 和 Yu-Wai-Man,2022 )。众所周知,潜在基因编辑结果的可预测性对于基因编辑技术在临床上用于基因治疗至关重要。为此,已经进行了大量的工作来了解CRISPR系统在核基因组编辑中对不同靶标的编辑规则,并且已经证明对于每个被CRISPR/Cas9编辑的原型间隔物来说,其结果是完全可预测的(van Overbeek et al., 2016 ; Shen et al., 2018 ; Shou et al., 2018 ; Allen et al., 2019 ; Chakrabarti et al., 2019 ; Chen et al., 2019 ; Long, 2019 ; Shi et al., 2019 ),这使我们能够提前知道每种策略在临床上应用的潜在结果。然而,对于线粒体基因组,由于缺乏 DNA 修复,CRISPR/Cas9 尚未参与 mtDNA 编辑
摘要在现代世界中,随着信息,科学和技术资源的发展,数据量正在迅速增加。云服务对于支持和优化大量数据的管理至关重要。随着技术的发展,有必要增强管理大量信息的方法。现代对效率和安全性的要求对业务部门构成了挑战,而云服务中流程的自动化正是实现高功能和保护的关键。在本文中,我们将探讨过程自动化在云服务中的重要性,这些技术如何贡献优化数据管理以及确保处理大量信息时的安全性。关键字1数据库,业务部门,云存储,安全性。1。简介
每个人都经历了处境引起的障碍和疾病(SIIDS)。这些障碍可能是由于各种情况而引起的,例如噪声,照明,温度,压力,社会规范等。例如,人们可能会错过一家嘈杂的餐厅中的重要电话,或者在做碗碟时难以回复短信。日常生活中这些多样化的情境环境可能会导致我们的身体,认知或情感能力暂时下降,从而导致体验不令人满意。最近,研究人员开发了通过提高移动设备的情境意识来解决SIID的系统。大多数系统都采用“感官模型改装”设计模式[53],也就是说,首先建立一个模型来识别导致特定SIID的特定情况,然后策划适合该环境的适应性。例如,检测一个人何时驾驶[5],步行[11,20],不受欢迎[38],分散注意力[37],或者在触摸屏上有雨水[50]。但是,SIID通常是动态的和普遍的,这使得逐渐扩展了以前的一次性解决方案,以便在各种情况下实时可容纳用户的不断变化的损害。构成一个典型的早晨例行活动:当一个人刷牙时,他们可能会受到与语音助手的交往的约束;洗脸时,他们可能会在阅读紧急消息方面挣扎;当使用吹风机时,他们可能会错过手机上的听觉通知。我们的论文着重于检测SIID的综合技术框架,推迟了SIID的适应未来研究。我们迭代尽管以前的系统已经开发了针对特定情况损伤的模型,但针对所有可能场景及其组合的手动设计检测解决方案是不切实际的,并且可伸缩性有限。在本文中,我们提出了人类I/O,这是一种新的方法,它认为SIID并非是需要特定检测模型的上下文特异性障碍,而是通过统一的镜头,而统一的镜头着重于人类输入/输出渠道的有限可用性。概述,而不是为诸如面部洗脸,牙刷或脱毛等活动设计单个模型,而是评估用户的视野,听力和手动交互渠道的可用性。随着大型语言模型(LLMS)的最新发展,它们表现出开放式摄影库的学习和推理能力,我们看到了一个令人兴奋的机会,可以利用LLMS并引入一个单一的统一框架来识别SIID。这种抽象将我们对SIID的思考扩大到全面的障碍范围,并允许开发可扩展的框架,从而使其他研究人员和开发人员不断扩大。我们首先对10名参与者进行了一项形成性研究,以了解基于渠道供应能力的SIID的范围。这些见解强调了系统的需求,以整合活动,环境和直接感知的信息提示,以实现渠道可用性预测,并认识到检测注意力,情感和技术siids的挑战。这将更好地与用户的需求保持一致,并允许开发人员根据损害严重性创建量身定制的策略。我们的发现还表明,系统应提供不同级别的通道可用性,而不是大多数系统中先前假设的二进制规模。
{| 0⟩,| 1⟩,。。。,|对于2 n个基准状态,2 N - 1},并表示n个Qubit状态| ψ⟩= p 2 n -1 i =0αi | k i⟩,
∗ 之前发布的名称是“创新网络和创新政策”。我们感谢 Chad Jones(编辑)、三位匿名审稿人、Philippe Aghion、Manuel Amador、Paul Antras、David Atkin、Salome Baslandze、Ariel Burstein、Lorenzo Caliendo、Vasco Carvalho、Ben Golub、Jill Grennan、Matt Jackson、Ben Jones、Chad Jones、Hugo Hopen-hayn、Bill Kerr、Pete Klenow、Sam Kortum、Atif Mian、Ezra Field、Bruno Pelligrino、Alessandra Peter、Stephen Redding、Peter Schott、Kjetil Storesletten、Alireza Tahbaz-Salehi、Aleh Tsyvinski、John Van Reenen、Jaume Ventura、Heidi Williams 和 Kei-Mu Yi 提供的有益反馈。我们还感谢许多研讨会和会议参与者的见解和评论。 Xugan Chen、Tianyu Fan 和 Daojing Zhai 提供了出色的研究协助。 † 普林斯顿大学经济学系和 NBER,ernestliu@princeton.edu。 ‡ 耶鲁大学管理学院和 NBER。
1 103(53.6)79(54.9)-0.0175 2 42(21.9)31(21.5)0.0140 3 16(8.3)15)15(10.4)-0.0673 4 5(2.6)2(2.4)2(1.4)0.0693≥53(1.6)2(1.6)2(1.4)2(1.4)2(1.4)2(1.4)0.02(3.02)。心肌梗塞42(21.9)30(20.8)-0.0264充血性心力衰竭84(43.8)56(38.9)-0.1026外周血血管疾病53(27.6)35(27.6)35(27.6)35(24.3)-0.0827脑血管疾病74(38.5)65(38.5)65(38.5)65(38.5)65(38.5)65(45.1) (SD)1.0(0.7)1.0(0.4)-0.0185中位随访持续时间(IQR),月19.7(24.0)18.9(28.1)数据以N为n(%),除非另有规定。多变量COX比例危害模型中使用的协变量。b内脏转移定义为肺和/或肝脏中的转移性疾病;患者可以有其他转移部位。没有内脏转移定义为无肺或肝转移。c仅骨转移仅定义为骨骼中的转移性疾病。d无病间隔定义为从初始乳腺癌诊断到MBC诊断的间隔。e在同一部位的多个转移量被计为1个位点(例如,如果患者在脊柱中有3个骨转移,则被认为仅为1个部位)。AI,芳香酶抑制剂; ECOG PS,东方合作肿瘤学组绩效状况; IQR,四分位数范围; MBC,转移性乳腺癌; NCI CI,国家癌症研究所合并症指数; PAL,PALBOCICLIB; SD,标准偏差; SIPTW,稳定治疗加权的逆概率。
11。Nishanth Chandran,Melissa Chase,Feng-Hao Liu,Ryo Nishimaki和Keita Xagawa。重新加密,功能重新加密和多跳重新吸收:实现基于混淆的安全性和晶格实例化的框架。在雨果·克拉维克(Hugo Krawczyk),编辑,PKC 2014:第17届国际公共密钥密码学理论与实践会议,计算机科学讲座第8383卷,第95-112页,阿根廷布宜诺斯艾利斯,阿根廷,2014年3月26日至28日,2014年3月26日。Springer,Heidel-Berg,德国
https://brain.bnu.edu.cn/glucish/faculty/lz0p.f8f8a,a0di,a,9a0a0a0a0a.ay。https://brain.bnu.edu.cn/glucish/faculty/lz0p.f8f8a,a0di,a,9a0a0a0a0a.ay。
治疗过程,一些有效的饮食治疗方法将接受且易于执行。因此,基于广泛接受的食物的疗法或预防方案的探索是必要的(Evert等,2019)。As one of three major beverages ( Peng et al., 2016 ; Yu et al., 2020 ), tea ( Camellia sinensis ) is closely related to the lifestyles and dietary habits of people in many countries ( Roy et al., 2008 ; Soh et al., 2017 ; Tsuboi et al., 2019 ; Inoue-Choi et al., 2022 ).Fuzhuan砖茶(FBT)作为中国传统茶,属于黑暗茶,具有独特的发酵过程。在发酵程序中,FBT的许多特殊感觉特征和健康益处是在被“黄金的植物真菌”发酵后产生的(aspergillus cristatus)(Xu等,2011)。在中国古代,FBT不仅是一种美味的饮料,而且是特定的植物。累积证据也表明,FBT是一种具有许多生物活性的功能饮料(Chen等,2018; Du等,2019; Jing等,2020; Zhou等,2021)。此外,在我们先前的研究中,发现FBT可以调节T2DM小鼠中血糖水平(Xiang等,2020),这也显示了体外α-葡萄糖苷酶的抑制作用(Xiang等,2021)。因此,作为具有潜在降血糖活性的流行饮料,对FBT的进一步开发和应用是必要的对治疗效果和机制的全面研究。如前所述,全球代谢组学分析可以根据实验数据探索代谢信息。随着仪器(例如质谱)(MS)等仪器的发展,代谢组学分析可能会从这些高维生物学数据中受益。 由于其完整性和动态条件的独特优势,全球代谢组学已成为研究内源性超级经验变异与疾病或治疗外源性干预之间的相互作用的全面且有效的策略(Warth等,2017; Meng等,2022b)。 同时,网络药理学可以通过重点关注“药物目标 - 基因 - 疾病”之间的相互作用来提供一系列系统和全面的观点(Zhang等,2019)。 由于这一优势,网络药理学一直是一种流行且有效的工具来解释复杂药物的机制(Guo等,2022; He et al。,2022)。 此外,网络药理学策略擅长基于网络数据库的动作目标和途径。 因此,可以通过整合全球代谢组学和网络药理学来整体揭示生物过程的总体骨架。 在这项研究中,通过药理学实验对侵略性低且适应性强的Kunming小鼠的降低血糖作用,通常用于T2DM研究(Meng等,2022a)。 应用了整合全球代谢组学和网络药理学的综合策略来研究潜在的动作途径和靶基因。 然后,通过实时定量聚合酶链反应(RT-QPCR)分析对筛选的靶基因进行验证。随着仪器(例如质谱)(MS)等仪器的发展,代谢组学分析可能会从这些高维生物学数据中受益。由于其完整性和动态条件的独特优势,全球代谢组学已成为研究内源性超级经验变异与疾病或治疗外源性干预之间的相互作用的全面且有效的策略(Warth等,2017; Meng等,2022b)。同时,网络药理学可以通过重点关注“药物目标 - 基因 - 疾病”之间的相互作用来提供一系列系统和全面的观点(Zhang等,2019)。由于这一优势,网络药理学一直是一种流行且有效的工具来解释复杂药物的机制(Guo等,2022; He et al。,2022)。此外,网络药理学策略擅长基于网络数据库的动作目标和途径。因此,可以通过整合全球代谢组学和网络药理学来整体揭示生物过程的总体骨架。在这项研究中,通过药理学实验对侵略性低且适应性强的Kunming小鼠的降低血糖作用,通常用于T2DM研究(Meng等,2022a)。应用了整合全球代谢组学和网络药理学的综合策略来研究潜在的动作途径和靶基因。然后,通过实时定量聚合酶链反应(RT-QPCR)分析对筛选的靶基因进行验证。通过上述系统分析,确定了潜在的有效代谢产物,基因和途径。