到自由落体进入黑洞的质量的辐射[6-9])。同样,一个永恒的均匀加速边界(移动的镜子)显然不会向无穷远处的观察者发射能量,例如[10]。对于永恒均匀加速的微妙之处和非直观行为,目前尚未达成共识(有关选择真空态之间区别的可能理由,请参阅[11])。另一个非常有趣的方面[12]是渐近静态镜子保持幺正性和信息[13]。我们探索了一个融合均匀加速和零加速度这两种状态的模型,并直观地表明该系统可以在较长时间内以恒定功率辐射粒子。该系统不仅会保存信息,还会发射热能,守恒总辐射能量,并发射有限的总粒子,而不会发生红外发散。这个模型可以模拟黑洞完全蒸发。相关的探索并非史无前例。黑洞蒸发具有相近的加速类似物[14],包括移动镜像模型[4,15]。渐近无限加速轨迹[16],如史瓦西黑洞、雷斯纳-诺德斯特伦黑洞和克尔黑洞的加速边界对应关系[17-19],演化为永恒热平衡解[20]。渐近有限加速(渐近均匀加速)对应于极值黑洞[21-24],而渐近恒定速度(零加速度)可以提供描述黑洞残余模型(例如[25-31])的信息保留准热解。最近,人们特别关注以渐近零速度镜为特征的幺正完全黑洞蒸发模型(例如 [ 32 – 38 ])。纠缠熵 [ 39 ] 以及信息直接与镜轨迹相关 [ 40 ]。然而,远处的观察者探测到的是辐射功率,而不是熵。我们通过均匀加速的模拟情况研究了完全黑洞蒸发中这两者之间的联系。
自从量子参考系 (QRF) 变换首次出现以来,它就得到了广泛的讨论,将物理定律的协方差推广到量子领域。尽管取得了重大进展,但仍然缺乏洛伦兹对称性的 QRF 变换公式。本研究旨在填补这一空白。我们首先引入一种独立于任何优选时间切片概念的相对论量子力学的重新表述。在此基础上,我们定义了在不同相对论 QRF 视角之间切换的变换。我们引入了“量子洛伦兹变换”和“洛伦兹增强叠加”的概念,作用于量子粒子的外部自由度。我们分析了两种效应,即时间膨胀的叠加和长度收缩的叠加,只有当参考系同时表现出相对论和量子力学特征时才会出现这两种效应。最后,我们讨论了如何通过测量相对论 QRF 的波包扩展来观察这些效应。
图1。DDT网络中层次结构的插图。以DTINET 116中的药物节点DB00050为例,它可以直接与两个靶点节点P30968和P22888结合,它也可以通过110个基于药物疾病的疾病节点和118
最近,Kostelecký 和 Samuel [1] 证明,在弦场论的背景下,当扰动弦真空不稳定时,由张量场控制的洛伦兹对称性 (LS) 破坏是自然的。Carroll 等人 [2] 在电动力学的背景下,研究了在修正的陈-西蒙斯拉格朗日空间中,即在 (3 + 1) 维中,存在背景矢量场的理论和观察结果,这种空间保持了规范对称性,但破坏了洛伦兹对称性。这些研究的目的之一是扩展可能涉及 LS 破坏的理论和模型,以寻找可以回答通常物理学无法回答的问题的基础物理理论。从这个意义上讲,标准模型 (SM) 已成为这些扩展的目标,这些扩展以 LS 破坏为特征,最终形成了我们今天所知道的扩展标准模型 (ESM) [3, 4]。近年来,LS 破坏已在物理学的各个分支领域得到广泛研究,例如磁矩产生 [5]、Rashba 自旋轨道相互作用 [6]、Maxwell-Chern-Simons 涡旋 [7]、涡旋状结构 [8]、卡西米尔效应 [9, 10]、宇宙学
在外部刺激上显着,迅速改变其形状和尺寸的结构在多样化的区域中广泛应用。将这些可部署和可变形结构微型化的能力对于需要高空间分辨率或最小入侵性(例如生物力学传感,手术和活检)的田地应用至关重要。尽管对致动机制和材料/结构策略进行了密集的研究,但在高尺度上实现可部署和可变形的结构仍然具有挑战性(例如,几毫米,与许多生物逻辑组织的特征大小相当)。与MIL-Limeter尺度的结构刚度相比,随着尺寸的缩小,驱动材料整合的难度会增加,并且许多类型的致动力变得太小。在这里,我们提出了电磁驱动和设计策略方案,通过利用力学引导的三维(3D)组装来克服这一挑战,以使当电流的金属或磁性膜整合到毫米尺度的结构中,以使受控的lorentz lorentz lorentz lorentz lorentz lorentz或磁性磁力下的外部磁性磁力在外部磁力上产生。tai的设计以定量建模和开发的缩放定律为指导,允许形成低尺度的3D体系结构,这些体系结构通过远程控制的电磁驱动而显着,可逆,迅速地变形。还可以实现具有多个稳定状态的可重构介质结构,其中去除磁场后保持不同的3D配置。的演示功能装置,该功能装置结合了双层膜中的热导率的同时测量的深层感应,这表明了拟议策略对生物医学信号的多模式感应的有希望的潜力。
长期以来,计算的理论模型被错误地视为纯数学结构。随着量子计算机的兴起,这种观点完全改变了。这是Deutsch [1]很好地总结的:“计算机是物理对象,···,计算机可以或不能做的是仅由物理定律决定的”。换句话说,不同的物理理论导致具有不同计算能力的不同计算模型。当前,只有两项良好的力学框架,经典力学(包括麦克斯韦方程和一般相对论)和量子力学(包括量子场理论)。,因此,有两种类型的计算机,经典的计算机和量子计算机。自然而然地结合了新型的机械师,并将其用作建立新计算机模型的基础。我们将讨论基于洛伦兹量子力学的计算模型,其中动态演化是复杂的洛伦兹变换。它是在参考文献中提出的。[2]作为Bogoliubov-De Gennes方程的概括; Pauli [3]很久以前研究了类似的机制。具有独立指标的Lorentz Me-Chanics中的关键特征是,只有具有积极规范的状态在物理上才能观察到。我们引入了一些称为双曲线位(或简称Hybit)。如此建立的Lorentz计算机由量子和Hybits组成,这些计算机由一组基本的逻辑门操纵。这些大门的普遍性是严格证明的。构造量子计算机是洛伦兹计算机的特殊情况,因此我们希望洛伦兹计算机更强大。确实是这种情况,因为我们发现了一种比Grover的搜索算法更强大的Lorentz搜索算法[4]。,我们将用带有选择后的光子模拟计算机模型的物理实现,因为单个Lorentz系统进行了模拟[5]。
集成强度与结构因子f的平方成正比。因素是:比例因子(S),Lorentz极化(LP),首选方向(O),吸收(A),其他“校正”(C)
静磁场:磁静力定律、磁感应、磁场中运动的点电荷所受的洛伦兹力、磁场的发散、矢势、电荷守恒和连续性方程、洛伦兹条件、磁场的旋度、安培定律和标量势。
(2)一个带电的圆柱导体,(3)无限的电荷片和两个平行的充电板,电容器,静电场能,电场中导体表面的每单位部位的力,在电场中指导球,以均匀的电场。介电常数,极性和非极性电介质,电介质和高斯定律,介电极化,电动极化矢量P,电位移矢量D.三个电载体,介电敏感性和介电常数和介电常数,二线易感性和极化机制,lorentz local fielt,lorentz lorentz locection和claius fieltriric等方程电介质,稳定电流,电流密度J,非稳态电流和连续性方程,LR,CR和LCR电路中电流的上升和衰减,衰减常数,交流电路,复数及其在解决交流电路问题中的应用,复杂的启发和反应性,串联和平行共振,Q因子,Q因子,Q因子,Q因素,Q因子,AC Coutfer a Ac Coutive a Ac Coutival a ac Coutive aC Ac Coutival aC AC Cower a ac Coution,AC Coution,AC Cower town aC,电动因子,电动因子,发电机,发电机,发电机,发电机,电动因子。
在实践中很难繁殖,因为它们需要以幅度和相项的调制,因此很难繁殖高斯光束。在此,计算了一种新的线性极化的Lorentz - 高斯光束,该束由螺旋隔离膜(LGB-HA)调制,并描述了该梁的两种各种实验生成方法,傅立叶变换方法(FTM)和复杂振幅调制(CAM)方法。与FTM相比,CAM方法只能通过一个反射型型相位液晶空间光调节器同时调节相位和幅度。这两种方法都与数值结果一致。CAM虽然更简单,更有效,并且通过数据比较具有更高程度的符合度。此外,考虑到具有异质分布的复杂Lorentz - 高斯光束中存在一些障碍,还实现了具有不同参数的梁的进化规律性(轴向参数,拓扑电荷和相位因子)。