量子反应是由于系统与其环境之间无法控制的纠缠而产生的。然而,经常通过更简单的情况来考虑和建模,在这种情况下,环境的作用是在系统的自由度中引入经典噪声。在这里,我们确定了经典噪声模型需要满足的必要条件,以定量地对变质进行定量建模。特别是,对于纯dephasing过程,我们确定了噪声确定的稳定统计属性,这些噪声由量子量算子的量子多点时间相关函数确定,而环境运算符将进入系统托架交互。尤其是,对于洛伦兹(Lorentz Drude)的光谱密度的示例性自旋玻色子问题,我们表明高温量子反应性被彩色高斯噪声数量地模仿。反过来,对于耗散环境,我们表明,经典噪声模型无法描述由于光子/声子的自发发射而放松引起的破坏效应。这些发展提供了一个严格的平台,以评估经典的破坏性噪声模型的有效性。
对称性是一种不变性:数学对象在一系列运算或变换下保持不变的性质。物理系统的对称变换是理解自然物理定律的基石之一。以恒定相对速度运动的观察者之间的对称性使伽利略提出了相对论原理,为现代物理学的基础提供了初步见解。正是控制麦克斯韦方程的对称性,即洛伦兹群,使爱因斯坦将伽利略的思想推广到狭义相对论,这是我们理解基本粒子运动学以及原子核稳定性的基础。在量子领域,由于自旋和统计学之间的深层联系,人们可以从对称性开始解释元素周期表。从更现代的角度来看,洛伦兹群的表示理论为开始组织相对论量子场理论提供了起点。基本粒子的量子数由对称群组织。对称群与规范对称性、自发对称性破缺和希格斯机制一起被用来构建基本粒子的标准模型,这是 20 世纪最伟大的科学成就之一。随着与扩展算子相关的各种新型对称性的发现,量子场论的最新研究正在经历一场进一步的革命。这些广义全局对称性 [1] 包括高阶形式对称性、范畴对称性(如高阶群对称性或不可逆对称性),甚至更普遍的子系统对称性等。这些新颖的对称性从根本上扩展了以前仅仅基于李代数和李群数学的标准对称概念,它们基于更先进的数学结构,概括了高阶群和高阶范畴。广义对称性有望对我们理解从凝聚态物理学到量子信息、高能物理学甚至宇宙学等各个物理学领域相关的量子场动力学产生深远的影响。1
量子信息技术中必不可少的量子器件是在硅或蓝宝石晶片上制造的。最近的研究发现,晶片中的声学模式可以在量子态操控中发挥重要作用,包括声学和量子比特态之间的交换操作,从而导致冷却 1,2。声学模式由晶片上制备的压电换能器产生。这通常是材料声学研究最常用的方法,其中电极与换能器粘合,而换能器与感兴趣的样品直接接触。换能器对振荡电压的压电响应将电磁信号转换为机械振荡。在某些情况下,让电极或换能器与样品物理接触是不可取的或不切实际的。在这里,我们展示了一种用于产生和测量材料中声学共振的非接触式技术。Dobbs 3 描述了使用螺线管和静磁场在金属中产生声学共振。电磁信号与机械振动之间的耦合是通过磁场产生的洛伦兹力实现的,从而无需使用压电材料。洛伦兹力发生在金属表面或射频 (RF) 穿透深度内,从而在体内产生声学模式。通过这种方法,我们研究了硅晶片中的高谐波声学模式,精确测量了纵向和横向声速并计算了相应的弹性常数。我们的样品是一块 [001] 单晶硅晶片,一侧覆盖有 Nb 薄膜。样品从最初直径为 15 厘米的商用晶片上切割下来,尺寸为 4mmx 4mmx 330 µ m(浮区,电阻率 > 10,000 Ωcm)。本文详细描述的结果针对的是厚度为 155 nm 的 Nb 薄膜,由 Rigetti Computing 采用高功率脉冲磁控溅射 (HiPIMS) 制备。高达 14 T 的高磁场敏感度测量
报道了在多铁绝缘体 Cu 2 OSeO 3 中发现了一种新型长寿命亚稳态 skyrmion 相,并用 Lorentz 透射电子显微镜对低于平衡 skyrmion 口袋的磁场进行了可视化。此相可通过用近红外飞秒激光脉冲非绝热激发样品来获得,而任何传统的场冷却协议都无法达到,这被称为隐藏相。根据光创造过程的强烈波长依赖性以及通过自旋动力学模拟,磁弹效应被确定为最可能的光创造机制。该效应导致磁自由能景观的瞬态改变,将平衡 skyrmion 口袋延伸到更低的磁场。对光诱导相的演变进行了超过 15 分钟的监测,未发现任何衰减。由于这样的时间比激光脉冲在材料中引起的任何瞬态效应的持续时间长得多,因此可以假设新发现的 skyrmion 状态在实际应用中是稳定的,从而为在超快时间尺度上按需控制磁状态的新方法开辟了新天地,并大幅减少了与下一代自旋电子器件相关的散热。
Abelian-Higgs模型[1]是一种相对论场理论,其在(2Þ1)维度中的激发采用拓扑稳定的孤子的形式,称为涡旋。该场理论由一个复杂的标量场φ组成,该场φ耦合到u - 1Þ量规场Aμ。静态理论等同于有效的金茨堡 - 兰道理论[2],它描述了一个通过涡旋数量量化的超导体的磁场。涡流解决方案的动力学是这两种理论不同的地方。 Abelian-Higgs模型具有Lorentz不变性[3-5]的二阶动力学[3-5],而依赖时间的Ginzburg-Landau模型则表现出一级动力学[6,7]。这是我们将在本文中重点关注的前二阶动力。请注意,在(3þ1)中的尺寸涡流显示为像弦类似的物体,所产生的宇宙字符串,如果存在,则可以通过对早期宇宙宇宙学的重力贡献来检测到它们[8]。涡流散射已经对单个参数λ的所有值进行了很好的研究[3 - 5,9,10]。此参数将模型分为两种类型; I型I(λ<1)其中涡流表现出长距离吸引力,而II型(λ> 1),其中涡旋在远距离排列。相比之下,在临界耦合(λ¼1)处,
现实世界的视觉数据具有固有的层次结构,可以在双曲线空间中有效地代表。双曲神经网络(HNN)是在此类空间中学习特征表示的有前途的方法。然而,计算机视觉中的当前HNN依赖于欧几里得主链,并且仅在任务头中的双曲线空间唯一的项目功能,从而限制了它们充分利用双曲线几何的好处的能力。为了解决这个问题,我们提出了HCNN,这是一种全均匀的卷积神经网络(CNN),专为计算机视觉任务而设计。基于Lorentz模型,我们概括了CNN的基本组合,并提出了卷积层,批准归一化和多项式逻辑回归的新型公式。对标准视频任务的实验证明了在混合和完全双曲的设置中我们的HCNN框架的有希望的性能。总体而言,我们认为我们的贡献为开发更强大的HNN提供了基础,这些HNN可以更好地代表图像数据中发现的复杂结构。我们的代码可在https://github.com/kschwethelm/hyperboliccv上公开获取。
1 Quantum设备中心,Niels Bohr Institute,哥本哈根大学,2100哥本哈根,丹麦2号哥本哈根2洛伦兹研究所和莱顿高级计算机科学研究所,莱顿大学,P.O。Box 9506,2300 Ra Leiden,荷兰3量子旋转中心,物理系,挪威科学与技术大学,NO-7491 Trondheim,挪威4 Qdevil,Qudevil,Qudevil,Quantum Machines,Quantum Machines,2750 Ballerup,Ballerup,Ballerup,Ballerup,丹麦5号工程学系,牛津大学,牛津大学,牛津大学,牛津大学,国王6 3pj and osteric of Actire of Actire of Burd of Accient and Intercoment of Thressicatik印第安纳州拉斐特47907,美国7 Birck纳米技术中心,普渡大学,西拉斐特,印第安纳州47907,美国8 Elmore电气和计算机工程学院,Purdue University,Purdue University,West Lafayette,Indiana 47907Box 9506,2300 Ra Leiden,荷兰3量子旋转中心,物理系,挪威科学与技术大学,NO-7491 Trondheim,挪威4 Qdevil,Qudevil,Qudevil,Quantum Machines,Quantum Machines,2750 Ballerup,Ballerup,Ballerup,Ballerup,丹麦5号工程学系,牛津大学,牛津大学,牛津大学,牛津大学,国王6 3pj and osteric of Actire of Actire of Burd of Accient and Intercoment of Thressicatik印第安纳州拉斐特47907,美国7 Birck纳米技术中心,普渡大学,西拉斐特,印第安纳州47907,美国8 Elmore电气和计算机工程学院,Purdue University,Purdue University,West Lafayette,Indiana 47907
基于量子纠缠和相应的量子通信,我们研究一种简单的超光速纠缠通信方案,其关键是建立两个相互纠缠的粒子或装置A和B,我们观测和控制A位置的信息,就可以知道B位置的相应结果,这并不是直接互相发送信息,而是可以超光速的。在狭义相对论中我们规定了必须有两个以光锥相隔的对称拓扑结构,这包括了类空区间的广义洛伦兹变换(GLT),其中相速度是超光速的。这是本方案的基础,可以检验GLT。关键词:量子纠缠;通信;超光速;狭义相对论。 1. 引言基于爱因斯坦-波多尔斯基-罗森(EPR)关联和贝尔不等式,Aspect等人首先通过测量钙辐射级联和时变分析仪发射的光子对的线性偏振关联实现了EPR实验,并与
穿过一个线圈绕组的交流电会产生磁通量,从而在相邻线圈中感应出电流。电压调节是通过改变线圈匝数来实现的。由于铁芯由钢(一种磁致伸缩材料)制成,这些磁通量(交替方向)会引起机械应变。这会因金属的快速膨胀和收缩而产生振动。这些振动通过油和固定内芯的夹紧点传递到油箱壁,产生可听见的嗡嗡声,称为铁芯噪声(见图 2,底部)。除了铁芯噪声之外,线圈中的交流电还会在各个绕组中产生洛伦兹力,从而引起振动(称为负载噪声),这会增加传输到油箱的机械能。面对这些多个噪声源以及相互关联的电磁、声学和机械因素,ABB 企业研究中心 (ABB) 的工程师
我们提供了一个基于经典电磁学的理论框架,以描述Fabry-Pérot腔的光学特性,并用多层和线性手性材料填充。我们发现了转移 - 矩阵,散射矩阵和绿色功能方法之间的正式联系,以计算依赖极化的光学传播和空腔模型的圆形二色性信号。我们展示了诸如洛伦兹的互惠和时间反向对称性之类的一般对称性如何限制此类腔的建模。我们采用这种方法来通过数值和分析研究,由金属或螺旋性的介电光子晶体镜制成的各种Fabry-Pérot腔的特性。在后一种情况下,我们根据在镜面界面上反映的电磁波的部分螺旋性保存分析了手性腔极性的发作。我们的方法与设计创新的Fabry-Pérot腔有关手性传感和探测腔体模化的立体化学相关。