摘要 本文介绍了(相对论)拉格朗日-汉密尔顿力学系统几何流的经典和量子信息理论。描述了 G. Perelman 熵泛函的正则非完整变形和经典力学系统的几何流演化方程的基本几何和物理性质。研究了此类 F 和 W 泛函在 Lorentz 时空流形和三维类空超曲面上的投影。这些泛函用于阐述拉格朗日-汉密尔顿几何演化的相对论热力学模型以及各自的广义汉密尔顿几何流和非完整 Ricci 流方程。非完整 W 熵的概念是作为经典香农熵和量子冯诺依曼熵的补充而开发的。考虑了基于经典和量子相对熵、条件熵、互信息和相关热力学模型的方法的几何流泛化。利用密度矩阵的形式和量子通道的测量来阐述量子力学系统演化的量子几何流信息理论的这些基本成分和主题。
摘要:Callan–Giddings–Harvey–Strominger 黑洞的光谱和温度与平坦时空中的加速反射边界条件相对应。beta 系数与移动镜模型相同,其中加速度在实验室时间内呈指数增长。黑洞中心由完全反射的规律性条件建模,该条件使场模式发生红移,这是粒子产生的源头。除了计算能量通量外,我们还找到了与黑洞质量和引力模拟系统中的宇宙常数相关的相应移动镜参数。推广到任何镜像轨迹,我们推导出自力(洛伦兹-亚伯拉罕-狄拉克),一致地将其和拉莫尔功率与纠缠熵联系起来,从而引发了对信息流加速辐射的解释。将镜面自力和辐射功率施加到特定的CGHS黑洞模拟动镜上,揭示了渐近热平衡过程中视界信息的物理特性。
伽马射线爆发喷流的命运和可观测特性主要取决于它们与围绕中央引擎的前身物质的相互作用。我们提出了这种相互作用的半解析模型(该模型建立在之前的几项解析和数值工作的基础上),旨在根据周围物质和发射时喷流的特性,预测爆发后喷流和茧能量以及洛伦兹因子的角度分布。利用该模型,我们构建了合成的结构化喷流群,假设前身是坍缩星(用于长伽马射线爆发 - LGRB)或双中子星合并(用于短伽马射线爆发 - SGRB)。我们假设所有前身都是相同的,并且我们允许发射时喷流特性几乎没有变化:因此我们的群体具有准通用结构。这些群体能够重现观测到的 LGRB 和 SGRB 光度函数的主要特征,尽管仍有几个不确定性和注意事项需要解决。我们向公众开放我们的模拟人口。
简介。由于Lorentz的不变性,信息的传播永远无法表达光速。实际上实现此速度的任何粒子都必须是无质量的,并且当能量受到限制时,可以将较低的速度限制放在巨大的颗粒上。在非依赖性系统中有效地有限的速度,相互作用的局部性构成了出现的约束[1]。在这封信中,我们研究了本地相互作用的量子电路中的纠缠速度限制(量子信息的度量)。随着光速,事实证明,达到最大传播纠缠速度的局部统一相互作用(或“门”)具有特殊的形式。在全球量子淬火中存在自然的纠缠速度概念[2-4]。当短程纠缠状态|通常,单位演变为单位进化,(小)子系统Q会热化。足够长的时间后,子系统Q的纠缠(或von Neumann)熵S(Q)将饱和到其平衡值。为了设定舞台,我们将具有局部希尔伯特空间维度Q的一个有限的晶格QUDIT系统置于一个维度上,并将半限定区域Q视为子系统。我们假设统一的进化可以使状态升温| ψ0⟩至有限温度。在达到平衡的途中,Q的von Neumann熵通常在t [5-7]中线性生长:
洛伦兹变换告诉我们,c 的不变性要求空间和时间混合在一起;一个观察者眼中的“空间”对另一个观察者来说可能是“空间”和“时间”的混合。就空间方向而言,这应该是很熟悉的——一个观察者眼中的“左”对另一个观察者来说可能是“左”和“前”的混合——但像这样混合时间和空间肯定感觉有些奇怪。我们不能再将空间和时间视为独立的东西了;我们反而将它们描述为一个新的统一实体:时空。每个惯性观察者都将时空分为空间和时间;然而,它们分为空间和时间的方式不同。这从根本上解释了为什么不同的惯性观察者测量的时间间隔和距离间隔不同。我们将使用时空图来研究时空几何形状的工具之一。该图说明了空间和时间的布局,就像某个特定惯性系中的观察者所看到的那样。制作此类图形的惯例是纵轴表示时间,横轴表示空间。
我们介绍了在桑迪亚国家实验室(Sandia National Laboratories)追求的磁惯性融合(MIF)概念Maglif(磁化衬里惯性融合)。在Maglif中,用融合燃料填充了一个厘米尺度的铍管或“衬里”,轴向预磁性,激光预热并使用Z机器中高达20 mA的爆炸,以便产生血浆的热核柱。激光预热升高了燃料的最初绝热性,电流,使衬里和准绝热地穿绝热地通过Lorentz力压缩燃料,轴向磁场限制了在内螺旋中限制了从燃料造成的燃料损失,从而限制了燃料壁的热损失。maglif是证明融合相关温度,显着融合产生(> 10 13主要的DD中子产量)和带电融合颗粒的磁性诱捕的第一个MIF概念,并有可能产生多MJ产量以及在60 MA下一代的下一代脉冲脉冲机上产生显着的自我热量。在这项工作中,我们回顾了自2013年第一个融合融合生产实验以来,在桑迪亚国家实验室的Maglif中进行了主要研究,最后讨论了利用Maglif获得融合能量的高收益和考虑因素的可能性。
aoˆut 2024:«约束下的随机过程»(Bielefeld);火星2024年:法国日本概率互动会议(IHES);果汁。2023:43 e Conf'erence«随机过程及其应用»(Lisbonne); d´ec。2022:会议«Lorentz气体在平滑的Ergodic理论与概率理论的交汇处»(Leiden,Pay-Bas); MAI 2022:会议«随机步行,聚合物和本地化»(Cirm,Marseille); 2021年11月:会议«随机几何时代»(法国Dunkerque); 2020年9月:会议“随机聚合物和网络”(法国Porquerolles); Juin 2019:第2届意大利概率和数学统计会议(Vietri Sul Mare); 2018年9月:统计力学模型中的“缩放限制”(Oberwolfach); Juillet 2018:CIMPA学校«随机结构的几何和缩放»(布宜诺斯艾利斯); Juillet 2018:概率和数学物理学的蒙特利尔夏季研讨会; 2017年9月:研讨会«随机步行,折叠和相关主题»(佛罗伦萨,Italie); Juin 2016:研讨会«柔软的当地时代,聚合物和相关主题»,(Im´era,Marseille); Juillet 2013:36 E Conf'erence«随机过程及其应用»(美国博尔德); Janv。2013:«欧洲裔年轻的欧洲概括者»(埃因霍温(Eindhoven),薪水); Mai 2012:conf'erence«随机聚合物和相关主题»(Singapour)。
与当前量子重力模型的相对论同步量子力学的同步不同。它起源于物理学哲学的根源和相对论和量子力学的基本概念。它强调了两个有意识的观察者需要体验一个有意识的时刻的事实。已经讨论了各种意识概念,并强调了引入新的量子意识模型的必要性。已经对量子坐标系进行了研究,以解释对“观察”和“现实”现象的当前理解。已经阐述了物理定义的观察结果仅限于Lorentz时空坐标系统,Minkowski协调系统和一般相对论。但是,如果不考虑另一种隐藏的转换来解释量子坐标系,将量子状态转化为相对坐标系,这是两个有意识的观察者之间通过量子状态的交互机制解释的两个有意识的观察者之间的相互作用,就无法完成观察现象。通过产生有意识的时刻的机制来说明流程图,并提出了一种新的意识模型。它强调了以下事实:“现实”与物理学定义的“观察”不同。它影响了特殊相对论的相对论因素,并提出了对其的修改。如果通过实验证明了这种修改的相对论因素,则结果确立了意识的机制和意识研究物理学的显着突破。
磁性 skyrmion 是未来大数据密度存储设备的有希望的候选者。人们已经发现,在室温条件下,有各种各样的材料可以承载 skyrmion。通常在透射电子显微镜 (TEM) 中进行的洛伦兹显微镜是表征真实空间中 skyrmion 样本的最重要工具之一。通过数值计算,这项工作将 TEM 中的相位对比度与孤立 N'eel 或 Bloch skyrmion(两种最常见的 skyrmion 类型)的实际磁化曲线联系起来。在所使用的 skyrmion 模型框架内,对于纯磁性样品,结果与 skyrmion 尺寸和壁宽以及样品厚度的比例无关。提供了简单的规则来提取纯 Bloch 或 N'eel skyrmion 的实际 skyrmion 配置,而无需模拟。此外,还介绍了符合实验预期的 N'eel skyrmion 上的首次微分相位对比度 (DPC) 测量,并展示了所描述的原理。这项工作与材料科学相关,它可以通过便捷的表征来实现 skyrmion 轮廓的设计。
MHD 发电机:MHD 发电机(MHD 电力发电机)是一种根据磁流体力学定律将工作流体的能量转换为电能的设备。磁流体动力发电提供了一种直接从快速移动的离子化气体流中发电的方法,无需任何移动的机械部件 - 无需涡轮机和旋转发电机。MHD 发电机以及传统发电机的工作原理基于法拉第感应定律。工作原理:MHD 发电机可以被视为流体发电机。这类似于机械发电机,其中金属导体通过磁场的运动会在导体中产生电流,只是在 MHD 发电机中,金属导体被导电气体等离子体取代。当导体穿过磁场时,它会产生一个垂直于磁场和导体运动方向的电场。这是迈克尔法拉第发现的传统旋转发电机背后的原理。荷兰物理学家安东·洛伦兹提供了数学理论来量化其影响。