聚集诱导发射(AIE)染料是构建发光囊泡的有效方法[12e16]。目前普遍认为,含有AIE基团的分子自组装可以提供适合原位追踪的优异发光性能,不仅克服了传统荧光染料荧光弱的缺点,还可以追踪囊泡在此过程中的整个循环细节,提供基础知识和实践指导。按照适当的方式,聚集状态下的AIE分子发出的明亮荧光可以照亮生物系统或材料系统中不可见的区域,从而使追踪这些系统的状态成为可能[17e21]。在本文中,我们将介绍AIE技术如何与囊泡相结合,以及当AIE遇到囊泡时会发生什么。
生化测定通常利用纯化的目标蛋白,并测量体外蛋白功能的变化,例如酶活性。这些测定通常以竞争形式进行,其中所研究的化合物必须取代已知的配体或底物。20 世纪 50 年代和 60 年代对酶和酶动力学进行的大量深入研究为精确计算化合物的效力 (IC 50 或 EC 50 ) 和功效 (% 最大反应) 提供了一种方法。在此期间,数百种酶被发现和纯化,后来成为药物发现的重要分子靶点 [5]。这些测定通常在 96、384 和 1536 孔板中进行,采用吸光度、荧光或发光等光学方法,可在测定体积、通量、成本和灵敏度之间做出平衡选择 [6,7]。
瞬态事件的光学成像在其实际发生时间内具有令人信服的科学意义和实际优点。1出现在二维(2D)空间中,并在飞秒(1fs¼10-15s)上发生到微秒(1μS¼1TO-6 s)的时间尺度,这些瞬态事件反映了生物学中许多重要的基本机制。2 - 4但是,许多瞬时现象是不可重复或难以再现的。示例包括自发的突触活动,在不同温度下的5纳米颗粒的发光寿命,6和活组织中的光散射。7在这种情况下,需要大量可重复实验的常规泵 - 探针方法是不可应用的。同时,泵 - 探针接近使用复杂设备的光子到达的时间,以在空间或时间上执行耗时的扫描。在这些情况下,即使瞬态现象可再现,这些
世界上因核燃料循环活动、核武器计划、放射性同位素在医学、研究和工业中的使用、事故等而受到放射性污染的国家。对于某些地点,由于特定的工业过程或操作,例如镭发光工厂操作或放射性物质的掩埋或处置而产生的污染,发生了相当局部的污染。对于其他地点,在核武器试验等计划活动或放射性物质意外泄漏(例如 1986 年 4 月的切尔诺贝利反应堆事故)之后,发生了放射性物质的大面积污染。这种放射性的存在,无论是自然的、人为的还是人为的,都可能对人类健康或环境造成危害。因此,为了将放射性危害降低到可接受的水平,适当的特性描述和补救可能是一项强制性要求。
键盘和触摸屏被广泛用于控制电子设备,但对于灵活性受损或患有神经系统疾病的人来说,操作起来可能很困难。已经开发了几种辅助技术,例如语音识别和眼动追踪,以提供替代的控制方法。然而,这些技术在使用和维护方面可能存在问题。我们在此报告了一种咬合控制光电系统,该系统使用集成在护齿套中的机械发光分布式光纤传感器。对机械刺激敏感的磷光体排列在柔性护齿套中的接触垫阵列中;通过在侧向位置使用独特的咬合接触模式,光纤传感器可以通过比率发光测量区分各种形式的机械变形。通过将设备与机器学习算法相结合,可以将复杂的咬合模式转换为特定的数据输入,准确率为 98%。我们表明,交互式护齿套可用于操作电脑、智能手机和轮椅。
世界上因核燃料循环活动、核武器计划、放射性同位素在医学、研究和工业中的使用、事故等而受到放射性污染的国家。对于某些地点,由于特定的工业过程或操作,例如镭发光工厂操作或放射性物质的掩埋或处置而产生的污染,发生了相当局部的污染。对于其他地点,在核武器试验等计划活动或放射性物质意外泄漏(例如 1986 年 4 月的切尔诺贝利反应堆事故)之后,发生了放射性物质的大面积污染。这种放射性的存在,无论是自然的、人为的还是人为的,都可能对人类健康或环境造成危害。因此,为了将放射性危害降低到可接受的水平,适当的特性描述和补救可能是一项强制性要求。
掺杂氮的碳量子点是通过一步大气压微质量工艺合成的。使用一系列的光学和化学测量以及通过理论计算来研究观察到的光致发光发射及其与氮掺杂的关系。氮掺杂到核心和氧基团的表面状态的功能化产生了杂种结构,该结构造成了量子的发光量高达33%。载体乘积被视为量子产率中的阶梯状增强。对可见光发射的分析表明,发射的大部分源自表面状态,而不是由于量子点核心内的重组而引起的。表面官能团的作用在确定光学特性中的量子确定性上是主要的。©2021作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
摘要:有机分子晶体的长寿命室温磷光引起了广泛关注。持久发光取决于分子成分的电子特性,主要是 p 共轭给体-受体 (DA) 发色团,以及它们的分子堆积。本文开发了一种策略,通过设计两种异构分子荧光粉,结合并结合 D 和 A 单元之间的 s 共轭桥和用于 H 键导向超分子自组装的结构导向单元。计算强调了 s 共轭桥的两个自由度对发色团光学性质的关键作用。分子晶体的 RTP 量子产率高达 20%,寿命高达 520 毫秒。高效磷光材料的晶体结构证实了发射体存在前所未有的良好组织,形成由分子间 H 键稳定的 2D 矩形柱状超分子结构。
聚集诱导的排放(AIE)已被大大用于可视化材料聚集和自组装。但是,制备AIE聚集体通常需要水,该操作的操作限制了许多材料处理行为。采用基于六磷酸的小分子,单聚合物和嵌段共聚物作为不同的材料原型,我们在这里通过应用非平衡策略,光激发控制的聚合来实现纯有机相的AIE。这种策略使分子构象而不是化学结构在辐照后的动态变化,从而导致有机溶剂中连续依赖聚集的发光增强(在发光量子量产率上增加了约200倍)。伴随着非平衡策略的实质性化,可以在有机溶剂加工的情况下实现具有稳态特征的光旋转自组件。带有发光变化的视觉监测覆盖了整个溶液到纤维过渡,以及固态材料的原位光处理。
摘要。众所周知,多结太阳能电池中的发光耦合效应有助于通过载流子重新分布实现子电池之间的电流匹配。我们使用防潮全无机钙钛矿量子点 (PQD) 膜展示了 III-V 多结太阳能电池装置中的载流子重新分布。这种疏水性 PQD 膜应用于完整的 III-V 多结太阳能电池装置。这成功地展示了垂直方向的电流重新分布,表现为较低带隙子电池中的电流收集增加,以及横向的电流重新分布,从发光起源的较高带隙子电池相邻的较低带隙子电池中电流收集均匀性改善可以看出。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 Unported 许可证发布。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.JPE.10.042005]
