月球电池是一个完全集成的太阳能电池系统。它包含一个混合逆变器,可有效地将太阳能和电池能量转换为电源房屋,并直接将多余的太阳能存储在电池中,以最大程度地利用太阳能使用。月球电池有模块化,紧凑的块,为各种尺寸的房屋带来24/7可靠的清洁能源。由智能软件提供动力,Lunar的持久电池与您的太阳系共同起作用,以最大程度地提高自我消费,节省公用事业账单并提供真正的全家备用体验。
•随机月球地形产生,具有大的(陨石坑,山丘)和小(迷你陨石坑,岩石)伪影。•其他地形样品是手工制作或缩放的NASA高分辨率地形。•许多可自定义的参数设置火山口,地形大小和特征。•培训数据收集的大面积,可为更广泛的唯一数据范围提供。
工程团队 Leandro James (SE 主管) Earl Daley (机械) Matt McKay Mike Padgen (流体学) Victor Yeh Brandon Schmitt (软件) Bryan Kirsch Mareyna Karlin Nicholas Stoffle (ARES) Brett Stroozas (OPS 主管) Steven Ormsby Stephanie Mauro (热能) HK Vogelsong (I&T 主管) Shang Wu (电气) Nghia Mai Neil Davies Aidan Remy
摘要 — CADRE(合作式自主分布式机器人探索)是一项月球技术演示任务,由三辆探测车和一个基站组成的团队进行多智能体自主探索。该任务计划于 2024 年作为 IM-3 任务的 CLPS(商业月球有效载荷服务)载荷降落在月球的雷纳伽马地区。CADRE 的目标是演示一组自主探测车如何仅接收来自地球的高级任务,自主探索月球表面的某个区域,并与多静态探地雷达协调进行分布式测量。我们设想,多智能体自主将使未来的任务能够解决月球、火星及其他地方的行星科学中迄今未解答的问题。在本文中,我们描述了为 CADRE 开发的自主架构,包括多智能体协调和单智能体驾驶表面移动性,并讨论了导致选择这种架构的要求和限制。
2.1 简介 3 2.2 解决方案 3 2.3 任务场景 4 3.1 技术概述 6 3.2 设计和优化 6 3.2.1 金属板合金的选择 7 3.2.2 金属板厚度的选择 7 3.2.3 充气压力的选择 7 3.2.4 二维金属板形状的选择 7 3.2.5 设计预测和优化的有限元应力分析方法 8 3.2.6 制造技术 8 3.2.7 充气技术 9 3.2.8 耐磨性 9 3.2.9 目标储存温度和压力的选择 9 3.2.10 风化层热性能验证 10 3.2.11 抗热梯度 12 3.2.12 埋藏深度的选择 12 3.3 测试方法 13 3.4 利益相关者13 3.5 风险管理 14 4.1 概述 16 4.2 验证测试 16 4.2.1 标准化充气压力 16 4.2.3 真空测试 18 4.2.4 低温储存 18 4.2.5 微陨石撞击与金属可修复性 19 4.2.7 焊接可靠性 20 4.2.8 强度测试 21 4.2.8 退火对碳钢的影响 21 5.1 未来发展路径 23 5.1.1 进一步的可靠性测试 23 5.1.2 大型模块测试的可扩展性 23 5.1.3 月球上焊接 23 5.1.4 Artemis 基地低温系统集成 23 5.1.5 地下模块的挖掘/安装 23 5.1.6 优化热管理低温学 24 5.1.7 NASA 组织 Artemis 基地资源的热管理 24 5.1.8 优化 METALS 几何结构以实现高效填充 24 5.1.9 传热实验 24 6.1 项目领导与管理 25
站,地球观察以及Artemis任务前往月球和火星。建立和培育合格,多样化和包容的劳动力对于NASA和我们的国家的未来成功至关重要。资深学校被鼓励与属于少数派服务机构(MSIS)的首次学校或学校合作。这是团队利用规模经济的一种手段,即成本,资源和整体经验。NASA将向Mentor学校颁发奖项。 工作,成本,奖励等的分配是学校之间的安排。 举例来说,赢得导师 /门生团队的奖项将如下:“大湖大学”与“ Faber College”合作< / div>NASA将向Mentor学校颁发奖项。工作,成本,奖励等的分配是学校之间的安排。举例来说,赢得导师 /门生团队的奖项将如下:“大湖大学”与“ Faber College”合作< / div>
术语定义 操作概念:从用户的角度描述系统在整个生产周期中的操作,包括清理和为下一个生产周期做准备所需的任何活动。 数字孪生:数字孪生是一组虚拟信息构造,它模仿自然、工程或社会系统(或系统的系统)的结构、背景和行为;使用来自其物理孪生的数据进行动态更新;具有预测能力;并为实现价值的决策提供信息。 1 在这项挑战中,月球表面回收的物理系统尚不存在;因此,团队将设计一个数字孪生,以模仿预期的未来物理系统,并包括预期系统的数据以及数字孪生与预期系统之间预期的双向交互。 评审团:来自政府、学术界和行业的专业人士和主题专家组成的评审团将对所有提交的作品进行评估和评分。 最终产品的制造:在这项挑战中,最终产品的制造是一个可能与回收过程分开的过程,最终产品的最终成品类似于市售产品。任务场景:基于真实月球任务的假设场景。在此挑战中,任务场景设想了月球表面的一整套废物管理需求和条件。 阶段:挑战的一个阶段,代表技术开发的关键步骤。此挑战最多有两个阶段。 回收:在此挑战中,回收包括将废弃物品转化为原料的过程,这些原料可用于制造用于科学、未来探索和商业用途的最终产品。 资源投入:在此挑战中,资源投入定义为操作和维护回收系统和制造最终产品所需的电力、水、化学品、矿物和任何其他投入,包括机组人员时间。 固体废物:此挑战中将处理的废物。固体废物不包括生物废物、危险废物、气体废物或代谢废物。假设任务场景中积累的固体废物类别和物品在表 4 中定义。
2020 年 7 月,NASA 选择月球 GNSS 接收机实验 (LuGRE) 作为 CLPS 任务订单 19D 的第 10 个有效载荷 [17]。2021 年 2 月,NASA 将任务订单 19D 授予 Firefly Aerospace。Firefly 的蓝色幽灵任务 1 (BGM1) 将把 LuGRE 和其他 CLPS 19D 有效载荷运送到月球危海的 18.6° N、61.8° E。LuGRE 旨在首次在 30 RE 以上的高度演示基于 GNSS 的导航,也是首次在月球表面使用 GNSS。LuGRE 科学目标的实现将扩大可用 GNSS 信号的已证实覆盖范围。后续任务将能够利用 LuGRE 数据和经验教训在月球区域内实现 GNSS 的运行,为探索月球的航天器增加一个现有的、经过验证的实时导航源。 2 卢格雷科学目标
摘要 可持续太空探索需要改进原位资源利用 (ISRU) 技术,特别是利用当地资源生产机器人和人类探索所必需的产品。利用当地资源(如水)的能力不仅可以解决从地球运输物资的后勤挑战,还可以显著降低与太空任务相关的成本。水被列奥纳多达芬奇视为自然的驱动力,是太空探索的关键资源。作为宇航员的消耗品、辐射屏蔽以及电解成氢和氧(一种高效的火箭推进剂组合)描述了它的多种应用。然而,原位水提取在技术上仍然具有挑战性,需要进一步开发。LUWEX 项目通过开发和验证完整的原位水工艺链(包括提取、净化和质量监测)来应对这一挑战。它设想利用月球风化层中的水来推进并供宇航员饮用,从而实现可持续的太空探索。该综合测试装置使用热真空室内的冰冷月球尘埃模拟物模拟月球条件,旨在将整个流程链的技术就绪水平 (TRL) 从 2 级和 3 级提升到 4 级(即功能验证),一些子系统甚至可达到 TRL 5(即在相关环境中进行验证)。本文讨论了该项目的目标和相应的方法,强调了先进的水提取、捕获、净化和质量监测技术的开发和验证。通过这些技术,LUWEX 寻求为未来由欧洲主导的太空探索任务贡献创新的月球水提取和净化系统。本文概述了系统设计,并详细介绍了项目的技术发展路线图,阐述了 LUWEX 对未来探索任务的适应性,强调了其预计的潜力和长期目标,并概述了潜在的地面应用策略。转向可持续实践增强了我们执行长期任务的能力,最大限度地减少了对地球资源的依赖,从而提高了太空探索的可行性和可负担性。关键词:原位资源利用 (ISRU)、月球水提取、可持续技术、月球风化层、水净化 1. 简介 1.1 背景和动机 长期载人月球探索需要原位资源利用 (ISRU),以通过最大限度地减少质量、成本和风险来增强未来任务的能力 [1] ISRU 技术旨在利用本地资源为机器人和人类任务生产必需产品,